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ABSTRACT 

          Modeling crash severity is an important component of reasoning about the issues 

that may affect highway safety. A better understanding of the factors underlying crash 

severity can be used to reduce the degree of crash severity injury, locate road hazardous 

sites, and adopt suitable countermeasures. In order to provide insights on the mechanism 

and behavior of the crash severity injury, a variety of statistical approaches have been 

utilized to model the relationship between crash severity and potential risk factors. Many 

of the traditional approaches for analyzing crash severity are limited in that they are 

based on the assumption that all observations are independent of each other. However, 

given the reality of vehicle movement in networked systems, the assumption of 

independence of crash incidence is not likely valid. For instance, spatial and temporal 

autocorrelations are important sources of dependency among observations that may bias 

estimates if not considered in the modeling process. Moreover, there are other aspects of 

vehicular travel that may influence crash severity that have not been explored in 

traditional analysis approaches.  One such aspect is the roadway visibility that is available 

to a driver at a given time that can impact their ability to react to changing traffic 

conditions, a characteristics known as sight distance. Accounting for characteristics such 

as sight distance in crash severity modeling involve moving beyond statistical analysis 

and modeling the complex geospatial relationships between the driver and the 

surrounding landscape. 

To address these limitations of traditional approaches to crash severity modeling, 

this dissertation first details a framework for detecting temporal and spatial 

autocorrelation in crash data.  An approach for evaluating the sight distance available to 
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drivers along roadways is then proposed.  Finally, a crash severity model is developed 

based upon a multinomial logistic regression approach that incorporates the available 

sight distance and spatial autocorrelation as potential risk factors, in addition to a wide 

range of other factors related to road geometry, traffic volume, driver’s behavior, 

environment, and vehicles. To demonstrate the characteristics of the proposed model, an 

analysis of vehicular crashes (years 2013-2015) along the I-70 corridor in the state of 

Missouri (MO) and on roadways in Boone County MO is conducted. To assess existing 

stopping sight distance and decision sight distance on multilane highways, a geographic 

information system (GIS)-based viewshed analysis is developed to identify the locations 

that do not conform to AASHTO (2011) criteria regarding stopping and decision sight 

distances, which could then be used as potential risk factors in crash prediction. 

Moreover, this method provides a new technique for estimating passing sight distance 

along two-lane highways, and locating the passing zones and no-passing zones. In order 

to detect the existence of temporal autocorrelation and whether it’s significant in crash 

data, this dissertation employs the Durbin-Watson (DW) test, the Breusch-Godfrey (LM) 

test, and the Ljung-Box Q (LBQ) test, and then describes the removal of any significant 

amount of temporal autocorrelation from crash data using the differencing procedure, and 

the Cochrane-Orcutt method. To assess whether vehicle crashes are spatially clustered, 

dispersed, or random, the Moran’s I and Getis-Ord Gi* statistics are used as measures of 

spatial autocorrelation among vehicle incidents. To incorporate spatial autocorrelation in 

crash severity modeling, the use of the Gi* statistic as a potential risk factor is also 

explored. The results provide firm evidence on the importance of accounting for spatial 

and temporal autocorrelation, and sight distance in modeling traffic crash data.
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CHAPTER 1: INTRODUCTION 

 Vehicular crashes are the world's leading cause of death for individuals between 

the ages of one and twenty-nine (WHO 2015). Throughout the world, cars, buses, trucks, 

motorcycles, pedestrians, animals, taxis and other categories of travelers, share the 

roadways, contributing to economic and social development in many countries. Yet each 

year, many vehicles are involved in crashes that are responsible for millions of deaths and 

injuries. Globally, every year, about 1.25 million people are killed in motor vehicle 

crashes and approximately 50 million more are injured.  Following current trends, about 

two million people could be expected to be killed in motor vehicle crashes each year by 

2030 (WHO 2015). Currently, road crashes are ranked as the ninth most serious cause of 

death in the world, and without new initiatives to improve road safety, fatal crashes will 

likely rise to the third place by the year 2020 (WHO 2015). In developed countries, road 

traffic death rates have decreased since the 1960s because of successful interventions 

such as seat belt safety laws, enforcement of speed limits, warnings about the dangers of 

mixing alcohol consumption with driving, and safer design and use of roads and vehicles. 

For example, road traffic fatalities has declined by about 25.0 percent in the United States 

from 2005 to 2014 and the number of people injured has decreased 13.0 percent from 

2005 to 2014 (NCSA 2015). In Canada, the number of road traffic fatalities has declined 

by about 62.0 percent from 1990 to 2014, and the number of injuries have declined by 

about 68.0 percent during the same period (Transport Canada 2016). However, traffic 

fatalities have increased in developing countries between 1990 to 2014 (i.e. 44.0 percent 

in Malaysia and about 243.0 percent in China) (WHO 2015). Developing countries bear a 



www.manaraa.com

 

 

2 

 

large share of the burden, accounting for 85.0 percent of annual deaths and 90.0 percent 

of the disability-adjusted life years. More than one-half of all road traffic deaths globally 

involve people ages 15 to 44, during their most productive earning years. Moreover, the 

disability burden for this age group accounts for about 60.0 percent of all disability-

adjusted life years. The costs and consequences of these losses are significant. Three-

quarters of all poor families who lost a member in a traffic crash reported a decrease in 

their standard of living, and about 61.0 percent reported having to borrow money to cover 

expenses following their loss (Beirness and Beasley 2011). The World Bank estimates 

that road traffic injuries cost 2.0 percent to 3.0 percent of the Gross National Product of 

developing countries, or twice the total amount of development aid received worldwide 

by developing countries (World Bank 2015). Crash-related injuries can be prevented or at 

least minimized by a joint involvement from multiple sectors (i.e. transportation agencies, 

police, health departments, education institutions) that oversee road safety, vehicles, and 

the drivers themselves. Effective interventions include design of safer infrastructure and 

incorporation of road safety features into land-use and transport planning; improvement 

of vehicle safety features; improvement of post-crash care for victims of road crashes, 

and improvement of driver behavior, such as setting and enforcing laws relating to key 

risk factors, and raising public awareness (Mohan 2002). 

 Modeling of crash data can assist with the development of generalized theories 

concerning road safety. A range of basic laws have been put forth to help explain the 

relationship between the occurrence of road crashes and potential risk factors, such as: 

the universal law of learning, which implies that the crash rate tends to decline as the 

number of kilometers travelled increases; the law of rare events, which states that rare 
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events, such as environmental hazards, would have more effect on crash rates than 

regular events; and the law of complexity, which implies that the more complex the 

traffic situation road users encounter, the higher the probability of crash occurrence 

(Elvik 2006). 

Although transportation agencies often seek to identify the most dangerous road 

sites, and put great efforts into preventive measures, such as illumination and policy 

enforcement, the annual number of traffic crashes has not yet significantly decreased. For 

instance, 35,092 traffic fatalities were recorded in the US during 2015, an increase of 

7.2% as compared to the previous year (NCSA 2016). The fatality rate per 100 million 

vehicle miles traveled (VMT increased 3.7% between 2014-2015. Thirty-five States had 

more motor vehicle fatalities in 2015 than in 2014. Every month except November saw 

increases in fatalities from 2014 to 2015, and the highest increases occurred in July and 

September (NCSA 2016). Given this trend, it is imperative to gain a better understanding 

of the risk factors that may be associated with traffic crashes. 

1.1: Factors Affecting Traffic Crashes 

A traffic crash may have many contributing factors, such as those related to driver 

behavior, road geometry, traffic volumes, vehicle, and environment. The influence of 

such variables on crash occurrence could significantly vary on a case-by-case basis, but 

in general, both behavioral factors related to the driver’s errors, and non-behavioral 

factors related to road geometry, traffic flow conditions, vehicle, and environment are 

thought to significantly affect traffic crashes (Caliendo et al. 2007). Research have 

revealed that there are generally six major groups of risk factors affecting traffic crash 

occurrence (Greibe 2003; Delen et al. 2006; Gelman and Hill 2007; Kim et al. 2007): 
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1. Driver behavior: alcohol and drug use, reckless operation of vehicle, 

failure to properly use occupant protection devices, the use of cell phones 

or texting, and fatigue. 

2. Vehicle factors: vehicle type, and the engineering and the safety design 

standards for vehicle performance. For example, the design of windshield 

glass and the location and durability of gas tanks can increase safety. 

Passenger protection systems in vehicles (i.e. airbags, safety belts), if 

used, can eliminate injuries or reduce their severity. 

3. Roadway characteristics: road geometries and road side conditions, such 

as well-designed curves and grades, wide lanes, adequate sight distance, 

clearly visible striping, flared guardrails, good quality shoulders, roadsides 

free of obstacles, well-located crash attenuation devices, and well-planned 

use of traffic signals.  

4. Traffic volumes: average annual daily traffic (AADT) or the vehicle miles 

travelled (VMT). AADT is the average number of vehicles passing a point 

along a particular road section each day. Thus, AADT represents the 

vehicle flow over a road section on an average day of the year. VMT 

refers to the distance travelled by vehicles on roads. It is often used as an 

indicator of traffic demand and is commonly applied to evaluate mobility 

patterns and travel trends.  

5. Environmental factors: weather conditions, and light conditions. 

6. Time factors: the season of the year, the month of the year, weekdays, and 

the hour of crash occurrence.  
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1.2: Cost of Traffic Crashes 

The highest cost of traffic crashes is in the loss of human lives; however, society 

also bears the consequences of many costs associated with motor vehicle crashes. 

Highway crashes currently cost the USA about $1078.0 billion a year, approximately 5.0 

percent higher than 2000. Total costs include both economic costs and societal harm 

(Blincoe et al. 2015). In the year 2010, 3.9 million people were injured and 32,999 killed 

in 13.6 million motor vehicle crashes in the US (NCSA 2015). The economic costs of 

these crashes totaled $242.0 billion including lost productivity, medical costs, legal and 

court costs, emergency service costs, insurance administration costs, congestion costs, 

property damage, and workplace losses. The $242.0 billion cost of motor vehicle crashes 

represents the equivalent of nearly $784.0 for each person living in the United States, and 

1.6 percent of the $14.96 trillion U.S. Gross Domestic Product for 2010 (Blincoe et al. 

2015). When quality of life valuation is considered, the total value of societal harm from 

motor vehicle crashes in 2010 was $836.0 billion, roughly three and a half times the 

value measured by economic impacts alone. Lost market and household productivity 

accounted for $77.0 billion of the total $242.0 billion economic costs, while property 

damage accounted for $76.0 billion. Medical expenses totaled $23.0 billion. Congestion 

caused by crashes, including travel delay, excess fuel consumption, greenhouse gases and 

criteria pollutants accounted for $28.0 billion. Each fatality resulted in an average 

discounted lifetime cost of $1.4 million. Each critically injured survivor cost an average 

of $1.0 million (Blincoe 2015). Traffic crashes cost state budgets huge amounts of money 

every year. For example, traffic crashes cost the state of Missouri in 2013 a total of 

$981.0 million, and the state of Kansas, a total of $449.0 million (CDC 2016).      
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1.3: Road Traffic Data Collection Methods 

Most studies of traffic related problems begin with the collection of data, vehicle 

counts in particular. Generally, traffic count collection methods can be classified as one 

of two categories: intrusive and non-intrusive methods. Intrusive methods typically 

involve a data recorder and a sensor placing on or in the road (Bar-Gera 2007). The most 

common intrusive devices are: 

 Pneumatic road tubes: rubber tubes placed across the road lanes to detect 

vehicles from pressure changes that are produced when a vehicle tire 

passes over the tube. The pulse of air that is created is recorded and 

processed by a counter located on the side of the road. The main drawback 

of this technology is that it has limited lane coverage and its efficiency is 

subject to weather, temperature and traffic conditions. 

 Piezoelectric sensors: sensors are placed in a groove along roadway 

surface of the lane(s) monitored. The principle is to convert mechanical 

energy into electrical energy. The amplitude and frequency of the signal is 

directly proportional to the degree of deformation. 

 Magnetic loops: this is the most conventional technology used to collect 

traffic data. The loops are embedded in roadways in a square formation 

that generates a magnetic field. The information is then transmitted to a 

counting device placed on the side of the road. This has a generally short 

life expectancy because it can be damaged by heavy vehicles, but is not 

affected by bad weather conditions. 

Non-intrusive techniques are based on remote observations ranging from human 
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observation to those based on new technologies (Fraser 2007): 

 Manual counts: Trained observers gather traffic data such as vehicle 

occupancy rate, pedestrians and vehicle classifications that cannot be 

efficiently obtained through automated counts. Equipment needs are rather 

basic with the observers usually requiring only a tally sheet, mechanical 

and/or electronic counting devices. 

 Passive and active infra-red sensors: the presence, speed and type of 

vehicles can be detected based on the infrared energy radiating from the 

detection area. The main drawbacks of this method are the sensor’s 

performance during bad weather, and limited lane coverage. 

 Passive magnetic sensors: magnetic sensors can be fixed under or on top 

of the roadbed. The sensors record the number of vehicles, their type and 

speed. However, in some operating conditions, the sensors have difficulty 

differentiating between closely spaced vehicles. 

 Microwave radar sensors: these sensors can detect moving vehicles and 

record vehicle counts, speed and vehicle classification and are not usually 

compromised by weather conditions. 

 Ultrasonic and passive acoustic sensors: these devices emit sound waves 

to detect vehicles by measuring the time for the signal to return to the 

device. The ultrasonic sensors can be placed directly over the lane or 

alongside the road to collect vehicle counts, speed and classification data 

However, the collection ability of these sensors can be adversely affected 

by temperature or bad weather. 
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 Video image detection: video cameras can be used to record vehicle 

numbers, type and speed by means of different video techniques e.g. trip 

line and tracking. Video detection systems can be sensitive to weather 

conditions. 

The Floating Car Data (FCD) can be used to collect traffic data by locating the 

vehicle via mobile phones or GPS over the entire road network. Data such as car location, 

speed and direction of travel can then be sent anonymously to a central processing center. 

After being collected and extracted, useful information can be redistributed to the drivers 

on the road (Robichaud and Gordon 2003). 

Two very important traffic measures are average annual daily traffic (AADT) and 

vehicle miles travelled (VMT). These two traffic variables, usually derived from fixed 

sensors measurements, play a key role in traffic crash analysis and policy decisions 

(Sliupas 2006). AADT is the average (calculated over a year) number of vehicles passing 

a point along a particular counting section each day. Thus, AADT represents the vehicle 

flow over a road section (e.g. highway segment) on an average day of the year. Methods 

for calculating AADT are generally based on data from two types of counts: permanent 

automatic traffic counts and short-period traffic counts. A combination of these two 

measurements is generally used to obtain an AADT estimate over a larger road network. 

In the US, the factoring method is a common methodology used to estimate AADT. This 

method has been adopted by many transportation agencies as a standard protocol 

corresponding with federal guidelines. The 2013 Traffic Monitoring Guide (TMG 2013) 

serves as a reference document that provides general guidance on the development of 

traffic monitoring programs for highway agencies. In particular, the TMG provides 
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guidance on the collection of traffic volume, vehicle classification, and weight 

information (Ehlert et al. 2006). VMT refers to the distance travelled by vehicles. It is 

often used as an indicator of traffic demand and for analyzing mobility patterns and travel 

trends. It plays a key role in various important decision-makings such as air quality 

compliance, roadway pavement maintenance, and crash analysis. There are four methods 

commonly used to calculate VMT (Fricker and Kumapley 2002): 

 Odometer readings (vehicle-based method) - at regular vehicle 

inspections, the average distance travelled by the vehicles is determined 

and then multiplied by the number of road vehicles. 

 Traffic counts (road-based method) - for one considered link, the VMT is 

calculated by multiplying the AADT by the length of the link. VMT for a 

roadway can then be obtained by summing the VMT of each segment. 

 Driver survey - questionnaires sent to households with one or more cars 

soliciting information such as the number of miles driven by each vehicle 

during the whole year and unit consumption. 

 Fuel consumption - the volume of road traffic is estimated from 

information about fuel supply and fuel consumption as derived from 

estimates of miles driven per fuel gallon for typical types of vehicles. 

1.4: The Contribution of Dissertation to Crash Severity Models 

    Modeling of vehicle crash severity is an important component of reasoning 

about highway safety. Insights resulting from models of crash severity can be used to 

reduce the degree of crash severity injury, locate road hazardous sites, and adopt suitable 

countermeasures. To this end, this dissertation explores modeling approaches and 
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considerations that will hopefully improve the quality of models of crash severity.  In 

particular, the following research themes are addressed: 

1) Modeling Highway Sight Distance: A GIS-based viewshed analysis is 

developed to assess existing stopping and decision sight distances along 

roadways. This method can be used to identify the locations that 

potentially might not conform to AASHTO (2011) criteria regarding 

stopping sight distance and decision sight distance. Additionally, the level 

of sight distance for sections of the roadway could also be used as a 

potential risk factor in models of crash severity and/or prediction.  

2) Locating No-Passing Zones along two-lane highways: The GIS-based 

viewshed analysis presents a new method for estimating the passing sight 

distance on two-lane highways, and hence, assisting in the identification of 

passing zones and no-passing zones along two-lane highways. An 

application of the methodology to MO Route-5, a two-lane highway, is 

conducted to assess the effectiveness of this method. 

3) Detecting Temporal Autocorrelation in crash data models: Temporal 

autocorrelation (also called serial correlation) refers to the relationship 

between successive values (i.e. lags) of the same variable. Although it has 

long been a major concern in time series models, it is also a very 

important consideration in crash severity models as well (Washington et al 

2010; Lord and Mannering 2010; Savolainen et al. 2011). However, in-

depth treatments of temporal autocorrelation in crash models are lacking.  

To this end, temporal autocorrelation is thoroughly investigated among the 
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time independent variables in crash data using several test statistics to 

detect the amount of temporal autocorrelation and its level of significance 

in crash data. The tests employed are: 1) the Durbin-Watson (DW) test; 2) 

the Breusch-Godfrey (LM) test; and 3) the Ljung-Box Q (LBQ) test. 

4) Removal of Temporal Autocorrelation: When temporal autocorrelation is 

statistically significant in crash data, it could adversely bias parameter 

estimates.  As such, if present, temporal autocorrelation should be 

removed prior to use in crash modeling. In this dissertation, two 

procedures are presented to remove the temporal autocorrelation: 1) 

differencing; and 2) Cochrane-Orcutt method. 

5) Incorporating Spatial Autocorrelation in Crash severity models: Given the 

spatial nature of vehicle crashes, the potential existence of spatial 

autocorrelation among crash incidents is a serious concern in crash 

modeling and if not appropriately accounted for, can bias parameter 

estimates (Quddus 2004; Washington et al 2010; Lord and Mannering 

2010; Savolainen et al. 2011). To determine if the vehicle crashes are 

spatially clustered, dispersed, or random, two indices of spatial 

autocorrelation are employed: Moran’s I and Getis-Ord Gi* statistic. In 

addition, this dissertation explores integration of the Gi* statistic in crash 

modeling as a potential risk factor, one whose use has not been reported in 

prior research. 
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6) Analysis of Spatial Autocorrelation via a Hybrid Method: In this 

dissertation, a new method for determining spatial autocorrelation of 

crashes is presented by combining both Moran’s I and Gi* statistic to 

examine the spatial clustering patterns of crashes.  

7) Multinomial Logistic Regression-Testing Outcomes: In this dissertation, a 

multinomial logistic regression (MNL) approach is applied to model the 

relationships of crash severity categories (i.e. fatal, disabling injury, minor 

injury, property-damage-only) with the independent variables. Although 

there are a few applications of the MNL in the literature regarding crash 

modeling, this dissertation presents several new outcome results in 

applying the MNL that have yet to be reported including: 1) the use of odd 

ratios as regression estimates instead of regression coefficients to interpret 

the results of prediction; 2) details of testing of the assumption of the 

independence of irrelevant alternatives that is very important in the MNL 

applications, using the Hausman specification test; 3) consideration of the 

generalized Hosmer-Lemeshow test as an important goodness of fit 

measure to assess whether or not the observed incidents match the 

predicted incidents; 4) the use of the classification table as a measure of 

goodness of fit to determine the percent of corrected prediction cases; 5) 

testing for the multicollinearity among the independent variables as 

precondition assumption; and 6) the use of the pseudo R squares as 

potential measures of goodness of fit. 
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8) Incorporating a Wide Range of Independent Variables in Crash Modeling: 

Past research has only employed a limited number of independent 

variables in crash modeling.  As such, this dissertation seeks to investigate 

the use of a wide range of independent variables (i.e. risk factors) that can 

be obtained from crash data in the modeling process. In particular, 18 risk 

factors are considered in the analysis, in addition to the spatial auto 

correlation index Gi* and the modeled roadway sight distance.  

In order to provide insights on the mechanism and behavior of the crash severity 

injury and to illustrate the developed analysis approaches, three case-studies in the State 

of Missouri are considered: 1) Interstate I-70; 2) roadways in Boone County, MO, and 3) 

MO Route-5. The study sites of I-70 corridor and Boone County roads were used to 

model crash severity along both of them, while MO Route 5 was used to locate passing 

and no-passing zones along it. Three years of Missouri crash data (2013-2015) are used 

in the analysis. The response variable (i.e. crash severity) in the MNL specification is 

modeled with four possible outcome categories: 1) property-damage-only; 2) minor-

injury; 3) disabling-injury; and 4) fatal injury. 

This dissertation is organized as follows: Chapter 2 provides an overview of crash 

severity models, a background literature of crash modeling, the importance of collecting 

crash data, the sources of crash data in the US, common problems with crash data, an 

overview of crash modeling methods, the AASHTO (2011) sight distance criteria, the 

concept of temporal autocorrelation, the concept of spatial autocorrelation, and an 

overview of the multinomial logistic regression. Chapter 3 discusses the theoretical 

concepts and the general methodologies developed for the temporal autocorrelation, 
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spatial autocorrelation, sight distance, and the multinomial logistic regression. Chapter 4 

describes the data used in this analysis, the selection of the independent variables, and the 

applications of Missouri crash data in regard to temporal autocorrelation, spatial 

autocorrelation, sight distance, and multinomial logistic regression. Chapter 5 presents 

the results of the analysis regarding the temporal autocorrelation, spatial autocorrelation, 

sight distance, and the multinomial logistic regression. Chapter 6 provides conclusions of 

the research presented in this dissertation. Figure 1.1 shows the dissertation workflow and 

the methodologies applied at each step of the research. 

  

 

Figure 1.1: Dissertation workflow 
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CHAPTER 2: BACKGROUND AND OVERVIEW 

This chapter presents a general background and an overview of some aspects 

involved in the crash modeling. First, an overview of crash severity models is presented. 

Second, a background literature of crash modeling is reviewed. Third, the importance of 

collecting crash data is presented. Fourth, sources of crash data in the US are detailed and 

then the structure of those data are discussed. Fifth, common problems with crash data 

are detailed. Sixth, an overview of crash modeling methods is reviewed. Next, the 

AASHTO (2011) sight distance as a potential risk factor is detailed. Next, the concept of 

temporal autocorrelation is discussed. Next, the concept of spatial autocorrelation as 

potential risk factor is explained in detail. Lastly, the multinomial logistic regression is 

presented as the modeling process in this dissertation, and its advantages in crash severity 

modeling.   

2.1: Overview of Crash Severity Models 

Vehicular crash data can be used to model both the frequency of crash occurrence 

and the degree of crash severity. Crash frequency refers to the prediction of the number 

of crashes that would occur on a specific road segment or intersection in a time period 

(Lord and Mannering 2010). Crash severity methods generally explore the relationship 

between crash severity injury categories and contributing factors such as driver behavior, 

vehicle characteristics, roadway geometry, and road-environment conditions. Modeling 

of crash severity is considered more informative than simply predicting the frequency of 

crashes (Washington et al. 2010). The data used in modeling crash severity is often 

attributed with many details relating to the crash occurrence (i.e. such as the number of 
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vehicles involved, age of victims, weather conditions, types of vehicles involved, and 

crash type) which can be integrated in statistical models (Savolainen et al. 2011). Since 

the dependent variable (i.e. crash severity) usually has two or more outcome categories 

(i.e. fatal, injury, property-damage-only), logit and probit models are often used to model 

the severity of crash data. Discriminant analysis could also be used to model crash 

severity, but given its rigid assumptions, logit and probit models have been viewed as 

preferable (Washington et al. 2010; Greene 2012). Binary models consider two response 

outcomes (i.e. fatal vs. non-fatal or injury vs. property-damage-only), and multinomial 

models consider three or more response outcomes. Crash severity models can be 

generally classified as either nominal or ordinal. The nominal models include statistical 

methods, such as: multinomial logit models; nested logit models, sequential logit models, 

and mixed logit models. Ordinal models, include: ordered logit models, ordered probit 

models, and ordered mixed logit models. Based on the existing literature, the multinomial 

logit models and ordered probit models have been found to be the most prominent types 

of models used for traffic crash severity analysis. Although there is no consensus on 

which model is the best, as the selection of the model is often governed by the 

characteristics of the data, many researchers have opted for nominal models over ordinal 

models. The rationale for this choice is likely due to the influence that independent 

variables in ordinal models could exert on the ordered discrete outcome probabilities.  

That is, in closely related categories (i.e. no injury and possible injury) there may be 

some shared unobserved effects among adjacent injury categories.  Failing to account for 

such correlation could generate incorrect inferences (Washington et al 2010; Savolainen 

et al. 2011). Others still prefer ordinal models due to their simplicity and overall 
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performance, especially when less detailed data are available. In addition, the 

applications of the logistic models are preferred over the applications of probit models 

due to the simplicity of their calculation (Washington et al. 2010). The most popular and 

convenient model used in the analysis of crash severity is the multinomial logistic 

regression that is derived under the assumption of the independence of irrelevant 

alternatives (IIA).  IIA refers to the situation where adding or deleting alternative severity 

outcome categories does not affect the prediction among the remaining severity 

outcomes. This means that the odd ratios produced by the logit function for any pair of 

severity outcomes are determined without reference to the other categories that might be 

available (McFadden et al. 1976; Hausman 1978; Washington et al. 2010; Savolainen et 

al. 2011), and therefore it must be checked in the modeling process. If the IIA does not 

hold, then other models must be considered, such as the nested logit models or the mixed 

logit models (Washington et al. 2010; Savolainen et al. 2011).  

2.2: Background Literature 

           Modeling crash severity is an important research area in highway safety, given its 

potential for identifying contributing factors that could then be addressed by 

transportation policy. In crash modeling research, a wide variety of statistical approaches 

such as the binary and the multinomial logit models, nested logit models, mixed logit 

models and ordered probit models have been investigated. For example, Abdel-Aty 

(2003) apply the ordered probit model to predict crash severity on roadway sections, 

signalized intersections and toll plazas in Florida. Winston et al. (2006) consider the 

drivers’ decisions to own a vehicle with airbags and/or anti-lock brakes with their 

probability of being crash-involved and the severity of their crash. They develop a 
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multivariate severity model that relate four binary outcomes: the choice of having 

airbags, the choice of having anti-lock brakes, the likelihood of being involved in a crash, 

and the likelihood of such a crash resulting in an injury. Milton et al. (2008) apply a 

mixed logit model in their research that used the injury outcome of the crash using 

limited crash data to investigate the proportion of crashes of each severity level on a 

specific roadway segment over a specified time period. Then, they determine the number 

of crashes by severity level without the need for detailed crash-specific data. Lee and 

Abdel-Aty (2008) develop binary severity probit models based on the assumption that 

drivers with passengers may drive differently than those without passengers. Both the 

sequential logit or probit models have been applied, which allow the severity categories 

across the ordered response levels to use separate coefficients for explanatory variables. 

For instance, Yamamoto et al. (2008) show that sequential models could provide good 

estimates similar to multinomial logit models when underreporting is a concern. They 

show that the parameter estimates remain unbiased except for the constant terms.  

Malyshkina and Mannering (2009) develop a two state Markov switching multinomial 

logit model to study crash injury severity under the hypothesis that there could exist two 

states of roadway safety (i.e. safe and unsafe), which may be caused by unobservable risk 

factors that influence crash severity, assuming that roadway entities can switch between 

the two states over time. Chang and Wang (2006) use a regression tree approach, which 

is a data mining technique that does not require a parametric assumption of the 

relationship between the degree of injury severity sustained and its associated 

explanatory variables. They show that this approach can provide an efficient technique, 

but less than the interpretive capabilities of discrete outcome models. Bham et al. (2012) 
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apply a multinomial logistic regression to model the severity injury of different vehicle 

collision patterns in urban highways in Arkansas, and recommended the use of the MNL 

over other models.  

              Early crash analysis models were generally based on simple multiple linear 

regression methods assuming normally distributed errors. However, researchers soon 

discovered that crash occurrence could be better fitted with a Poisson distribution.  

Hence, a Poisson regression model based upon a generalized linear framework was soon 

adopted over conventional multiple linear regression techniques. Several such Poisson 

regression approaches for exploring the relationship between the risk factors and crash 

frequency have been proposed (Park and Lord 2007; Ma et al. 2008; El-Basyouny and 

Sayed 2009). However, it has been found that Poisson regression approaches have one 

important constraint - that the mean must be equal to the variance – which if violated, the 

standard errors estimated by the maximum likelihood method, will be biased, and the test 

statistics derived from the model will be incorrect. Recent studies have shown that crash 

data are usually over-dispersed, when the variance exceeds the mean, therefore, incorrect 

estimation of the likelihood of crash occurrence could result in applications of the 

Poisson regression model (Lord and Mannering 2010). In efforts to overcome the 

problem of over-dispersion, researchers began to employ the Negative Binomial (NB) 

distribution (also called the Poisson-Gamma) instead of the Poisson distribution, which 

relaxes the mean equals to variance constraint, and hence can accommodate over-

dispersion in crash data counts (Lord and Mannering 2010). NB models have been widely 

used in crash frequency modeling (Kim et al. 2007; Lord and Bonneson 2007; El-

Basyouny and Sayed 2009; Daniels et al. 2010; Malyshkina and Mannering 2010; 
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Geedipally et al. 2012). However, NB models have some limitations such as the inability 

to handle under-dispersion of crash counts when the mean of the crash counts is higher 

than the variance.  Although rare, this phenomenon can arise when the sample size is 

very small, leading to erroneous parameter estimates (Lord 2006; Oh et al. 2006). To 

address the limitations of NB models, Poisson-lognormal models have been proposed, in 

which the error term is Poisson-lognormal rather than gamma- distributed to better handle 

the under-dispersed crash counts (Lord and Miranda 2008; Aguero-Valverde and Jovanis 

2008; Daniels et al. 2010). Another widely used type of crash prediction model is the 

zero-inflated Poisson and zero-inflated negative binomial models, which have been 

introduced mainly to deal with the over-dispersion problem caused by excessive zeroes 

(i.e. locations where no crashes can be observed) in traffic data counts. The zero-inflated 

models have shown great flexibility, although their applicability in crash prediction has 

been criticized because of the long term mean equals zero in the safe state that could 

produce some biased estimates (Lord and Mannering 2010; Malyshkina and Mannering 

2010).  Generalized additive modeling approaches have also been proposed which 

provide smoothing functions for the explanatory variables.  However, these models 

typically include more parameters than the traditional count models, and therefore their 

applicability to the crash prediction has been very limited (Xie and Zhang 2008; Li et al. 

2009). Random-parameters models have been applied to take the effect of the unobserved 

heterogeneity from one roadway site to another, however, their application in practice has 

been very limited (Milton et al. 2008; Anastasopoulos and Mannering 2009; Washington 

et al. 2010). The finding that road crashes are poorly explained by linear functions of 

independent variables, has encouraged the exploration of non-linear approximators such 
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as fuzzy logic and neural networks. For example, two fuzzy logic models have been used 

for predicting the crash frequency on wet pavement and results indicated that the fuzzy 

logic models exhibited better characteristics over nonlinear regression models (Xiao et al. 

1999). In another application, Meng et al. (2009) use a fuzzy logic approach for 

prediction of urban highway crash occurrence and find the use of fuzzy sets in crash 

prediction is indeed a viable approach. Neural networks have been applied to highway 

safety applications as predictive tools, such as in driver behavior analysis, pavement 

maintenance, vehicle detections, traffic signal control, and vehicle emissions, however, 

their application to crash analysis has been limited (Abdelwahab and Abdel-Aty 2002; 

Riviere et al. 2006; Xie and Zhang 2008). For instance, Chang (2005) utilize artificial 

neural network to analyze the freeway crash frequency in Taiwan, and indicate that an 

artificial neural network can provide a consistent alternative method for analyzing crash 

frequency. (Delen et al. 2006) apply a group of artificial neural networks to model the 

non-linear relationships between the injury severity levels and crash-related factors.  

Their findings indicate that artificial neural network models can predict crashes more 

effectively than the traditional statistical methods. 

2.3: The Importance of Collecting Vehicular Crash Data 

Vehicular crash data are used to respond to requests from the Congress, federal 

agencies, state and local governments, universities and research organizations, highway 

safety communities, the media, and private citizens. Accurate data are required to support 

the development, implementation, and assessment of highway safety programs aimed at 

reducing crash tolls. An example of the practical importance of collecting and 

maintaining vehicular crash data is the recent emerging of the crash data retrieval tools, 
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commonly referred to as the vehicle black boxes. Based upon a rule imposed by the 

National Highway Traffic Safety Administration (NHTSA), most vehicles manufactured 

and sold in North America after 2012 are equipped with event data recorders (EDRs) that 

collect, store, and retrieve vehicle crash event data. The EDRs can help law enforcement 

investigating vehicle crashes to recover crucial crash data parameters from a vehicle that 

has been involved in a crash, including pre-crash data that will help better understand 

important factors that led to the crash occurrence (NHTSA Ruling 2010). The anticipated 

availability of new crash data from vehicle black boxes could lead to important 

developments in the field of crash frequency and road safety (Lord and Mannering 2010). 

Another practical example is the use of the Crash Outcome Data Evaluation System 

(CODES), which is a program managed by NHTSA, to link crash records to injury 

outcome records collected at the scene by emergency medical services. CODES data has 

been utilized to improve traffic safety issues in different ways, such as examining 

whether the increased crash rates for teen drivers have resulted in an increased injury to 

their passengers, and exploring the seat belt usage in preventing injuries and fatalities. 

CODES data has also been used to inform and educate traffic safety decision-makers at 

federal, state, and local levels in many circumstances, for instance, providing federal and 

state legislators with CODES reports on the importance of seat belt use in preventing 

injuries and fatalities; delivering data to the state highway administrations to develop 

long-term, statewide strategic plans for traffic and highway safety; and publishing 

CODES fact sheets that can help educate the public (NHTSA CODES 2011). 
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2.4: Sources of Vehicular Crash Data 

In the U.S., a variety of efforts to collect, maintain and/or distribute information 

on vehicular crash data have been utilized.  Some of the crash data sources that are 

publicly available are listed below: 

2.4.1: Fatality Analysis Reporting System (FARS) 

 FARS is an online database of fatal motor vehicle crashes that documents all 

fatalities that occurred within the 50 States since 1975. FARS qualifying crashes had to 

involve a motor vehicle traveling on a public traffic way, and must have resulted in the 

death of a motorist or a non-motorist within 30 days of the crash. FARS is administered 

by the National Center for Statistics and Analysis (NCSA) within the National Highway 

Traffic Safety Administration (NHTSA). FARS data are collected from each State’s 

government by trained state employees, who are responsible for gathering, and 

transmitting their state’s data to NCSA in a standard format. After the data file is created, 

quality checks are performed on the data, and the electronic data are made available 

online to the public in Statistical Analysis System (SAS) data files as well as Database 

Files (DBF).The main SAS data files include: the Accident file, which contains 

information about crash characteristics and environmental conditions at the time of the 

crash; the Vehicle file, which contains information describing the in-transport motor 

vehicles and the drivers of in-transport motor vehicle who are involved in the crash; the 

Person file, which contains information describing all persons involved in the crash 

including motorists and non-motorists (e.g., pedestrians); the Damage file, which 

contains information about all areas on the vehicle that were damaged in the crash; the 

Drimpair file, which contains information about physical impairments of drivers of motor 
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vehicles; the Factor file, which contains information about vehicle circumstances that 

may have contributed to the crash; the Violatn file, which contains information about 

violations that were charged to drivers; and the Vindecode file, which contains vehicle 

descriptors based on the vehicle’s VIN. The temporal coverage of FARS data includes 

some variables such as, the time of the crash, the date, the month, and the year. The 

spatial coverage of FARS data includes, the latitude and longitude coordinates of each 

crash location. The FARS data are generally complete, reliable, and publicly available 

online (NHTSA-FARS 2016). However, one of the FARS data weaknesses is that FARS 

data cannot be downloaded for multiple years at a time due to the system complexities, 

and when data is downloaded from FARS website, the user can obtain data by only one 

variable at a time. In addition, as mentioned above, the FARS data does not provide the 

injury-severity only crashes, and property- damage only crashes. 

2.4.2: The NASS - GES 

 The National Automotive Sampling System (NASS) - General Estimates System 

(GES) obtains its data from a representative crash sample selected from more than five 

million police-reported crashes annually in the US. These crashes include those that 

result in a fatality or injury and those involving major property damage as well. The data 

are obtained by NASS - GES data collectors in 60 geographic sites across the United 

States. These data collectors make visits to approximately 400 police agencies within the 

60 sites, where they randomly sample about 50,000 crash per year. NASS-GES data are 

made available to the public in Statistical Analysis System (SAS) data files as well as 

Database Files (DBF). The main SAS data files of NASS-GES include similar FARS 

files mentioned above. The temporal coverage of the NASS-GES data includes variables 
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such as, time of the crash, the date, the month, and the year. The spatial coverage only 

includes the land use of the crash location without providing the latitude and longitude of 

the crash location or the x, y coordinates. One weakness in NASS-GES data is that it uses 

a weighted data element that produces the overall national estimates that may differ from 

the true state-level values because they are based on a probability sample of crashes 

among the country, and this cannot give the accurate state-level estimates, which 

decreases the reliability of the data. Another weakness is that the NASS-GES data are 

obtained either directly from the police accident report (PAR) or by interpreting the 

information provided in the PAR through reviewing the crash diagram, or combinations 

of data elements on the PAR. Because of this interpretation, an important portion of data 

can be missing in the system (NASS-GES 2016). 

2.4.3: The NASS - CDS 

The National Automotive Sampling System (NASS) - Crashworthiness Data 

System (CDS) obtains its data from 24 geographic sites in the US. These data are 

weighted to represent all police reported motor vehicle crashes occurring in the USA 

during the year including light vehicles, such as, passenger cars, SUVs, and vans. The 

NASS-CDS files are available in a Statistical Analysis System (SAS) dataset, and contain 

similar FARS files. The NASS- CDE system provides temporal coverage of data through 

variables such as, time of the crash, the date, the month, and the year. There is no spatial 

coverage within the NASS-CDS data, as it does not provide the latitude and longitude of 

the crash location nor the x, y coordinates. One weakness of the NASS-CDS data is that 

the data from these crashes are weighted to produce national estimates, and cannot give 

the state-level estimates, which decreases the reliability of data (NASS-CDS 2016). 
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2.4.4: The State Data System (SDS) 

The State Data System (SDS) is maintained by NHTSA’s National Center for 

Statistics and Analysis (NCSA), and only thirty-two states are participating in the system, 

including the state of Missouri. While the (FARS) only has fatal crash data, SDS provides 

data on injury and property-damage-only crashes as well. In contrast to the data in 

(NASS-GES), the SDS consists of census data taken directly from police accident 

reports. The law enforcement agencies within a state are the primary source of 

information on crashes occurring within a state. All states have requirements for 

documenting fatal, injury or property damage crashes (with damage above a certain 

dollar threshold). Each participating state has its own reporting system, for instance, in 

the state of Missouri, the Missouri Statewide Traffic Accident Records System (STARS) 

is managed by the Missouri State Highway Patrol (MSHP), and all Missouri law 

enforcement agencies are required by law to submit a Missouri Uniform Traffic Crash 

Report to STARS if a traffic crash occurred that involves a death, a personal injury, or a 

property damage. STARS involves many recording files, such as, the Crash and Personal 

Severity, which includes fatal, personal injury, and property damage; the Crash 

Circumstances file, which includes motorcycles crashes by year; Speed Involved Traffic 

Crash file; Alcohol Involved Traffic Crash file; Young Driver Involved Traffic Crash 

file; and Mature Driver Involved Traffic Crash file. All files are provided in excel and pdf 

format, complete, reliable, and available online for the public (MSHP 2016). The 

temporal coverage of the SDS data includes variables such as, time of the crash, the date, 

the month, and the year. The spatial coverage only includes the x, y coordinates of the 

crash locations in only some spots. One weakness of the SDS data is that it does not 
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provide a comprehensive list of risk variables and details that exist in the FARS and 

NASS-GES systems (NHTSA-SDS 2016). 

2.4.5: The Highway Safety Information System (HSIS) 

The Highway Safety Information System (HSIS) is a highway data system funded 

by the U.S. Federal Highway Administration (FHWA), with data voluntarily provided to 

HSIS by the participating states, which are California, Washington, Minnesota, Illinois, 

Ohio, Maine, and North Carolina. HSIS began operation in 1987, and the participating 

states were selected based on their data availability, quantity, and quality of data. HSIS 

supports the FHWA safety research program, and can be accessed online by researchers, 

universities, and safety professionals. The HSIS files are available in a (SAS) format, and 

the main files include four basic files namely; the Accident file, the Vehicle file, the 

Occupant file, and the Roadway file. The temporal coverage of the HSIS data includes 

variables such as, time of the crash, date, month, and the year. The spatial coverage only 

includes the section length, and the milepost of the crash location without providing the 

latitude and longitude of the crash location nor the x, y coordinates. The HSIS data are 

generally complete with very few missing data, reliable, and publicly available. One 

weakness of the HSIS data is that it does not cover all states within the US, and also their 

main files should be merged in order to get the required information (HSIS 2016).  

2.4.6: Data.gov 

The Data.gov is a federal open US government online database that includes all 

states, and local government’s metadata describing their open data resources. Data.gov 

began operation in 2009, and is managed and hosted by the U.S. General Services 

Administration, Office of Citizen Services and Innovative Technologies, and follows the 



www.manaraa.com

 

 

28 

 

Project Open Data schema that includes fields, such as title, description, tags, publisher, 

etc. for every data set displayed on the website. Different data topics are available, such 

as Agriculture, Health, Business, Climate, Energy, Finance, and Science. The 

transportation statistics series consists of analyzed statistical information on motor fuel, 

vehicle crashes, motor vehicle registrations, driver licenses, highway user taxation, 

highway mileage, travel, and highway finance. The files are available in CSV format, and 

can be freely downloaded without registration (Data.gov 2016). 

2.4.7: The U.S. Census Bureau 

The U.S. Census Bureau is part of the Department of Commerce, and is overseen 

by the Economics and Statistics Administration. The transportation section within the 

online database provides data on civil air transportation, water transportation, revenues, 

passenger and freight traffic volume, trains, highway mileage and finances, highway 

crash data, characteristics of public transit, and railroads. Data are available in excel 

format for public use (The U.S. Census Bureau 2016). 

2.4.8: The SHRP2-NDS 

The Strategic Highway Research Program 2- Naturalistic Driving Study (SHRP2-

NDS) is an online database related to the Transportation Research Board (TRB)’s second 

safety project for an in-vehicle driving behavior field study collected from naturalistic 

driving data and associated participant, vehicle, and crash-related data. The project was 

conducted by six site contractors located at geographically distributed data collection 

sites throughout the United States and more than 3,000 individuals participated in the 

study. Given that the SHRP 2- NDS is a federally funded study that involves human 

subjects, the collection of the data and its use in analysis are subject to the approval of 
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institutional review boards. The SHRP 2-NDS database is managed by the Virginia Tech 

Transportation Institute, and researchers interested in accessing the data must 

demonstrate that they are qualified researchers seeking the data for research purposes 

(SHRP2-NDS 2016).  

2.4.9: The Center for Advanced Public Safety (CAPS) 

The Center for Advanced Public Safety (CAPS) is a research center at the 

University of Alabama that deals with vehicular crash data, and traffic safety 

improvements, among other research areas. CAPS has developed a tool for crash data 

analysis called the Critical Analysis Reporting Environment (CARE), which has many 

useful analytical functions such as, frequency distributions, cross-tabulations, and 

statistical significance tests. CARE can compare the performance of one subset of data 

against another in terms of all potential variables that could demonstrate performance 

differentials. CARE analysis software is free to download and is required to analyze and 

visualize the electronic data contained within CAPS datasets. The CAPS online crash 

datasets are free to download, and contains a variety of crash data files that mainly 

belongs to the state of Alabama, such as the vehicle crash files, the driver data file, the 

person data file, and the road data file (CAPS 2016). 

2.5: Count Data 

When discussing traffic crash modeling, it is important to differentiate between a 

count, and count data. The term count typically refers to an enumeration of events. Count 

data, on the other hand, refers to the observations made about events that are enumerated 

(Hilbe 2014). A common quality of count data is that (0.0) is the most frequently 

observed value, (1.0) is the next most observed, (2.0) the next, and so on. Use of count 
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data are widespread in many disciplines, including transportation engineering. Examples 

of count data applications in transportation include the number of driver route changes 

per day, the number of trip departure changes per week, number of vehicles waiting in a 

queue, and the number of crashes observed on road segments per some time period, such 

as a year, or five years. Count data are often described as random events, sporadic (i.e. 

isolated or scattered), rare, discrete, not continuous, and non-negative integers (Hauer 

1992). One frequent pitfall is to model count data as continuous data by applying an 

ordinary least square regression (Glenberg 1996). This approach is inappropriate because 

regression models can produce predicted values that are non-integers and can also predict 

values that are negative, both of which are inconsistent with count data. In addition, many 

distributions of count data are positively skewed with many observations in the data set 

having a value of 0.0. The high number of zeros in the data set prevents the 

transformation of a skewed distribution into a normal one, which is a requirement of 

normal distribution. An alternative is to use a Poisson distribution or one of its variants. 

Poisson distributions have a number of advantages over an ordinary normal distribution, 

including a skew, discrete distribution, and the restriction of predicted values to non-

negative numbers (Glenberg 1996). 

2.6: Common Problems with Crash Data 

Crash data suffer from some problems or issues that have been identified in the 

literature over the years. These problems are a potential source of error in modeling crash 

prediction that may cause incorrect estimates and inferences. These issues are 

summarized below: 

 Over- dispersion: over-dispersion occurs when the observed variance 
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exceeds the theoretical variance of the crash counts, which violates the 

assumption of the most common count-data modeling approach. Over-

dispersion in crash data can result from a variety of factors, such as the 

clustering of data , unaccounted temporal correlation, and model miss-

specification (Cameron and Trivedi 1998). When data are over-dispersed, 

estimation of a crash model can lead to biased parameter estimates, which 

in turn could lead to incorrect inferences regarding the factors that 

determine crash-frequencies ( Miaou 1994; Cameron and Trivedi 1998; 

Park and Lord 2007).  

 Under-dispersion: under-dispersion occurs when the observed variance of 

the crash counts is smaller than the assumed (i.e. theoretical) variance, and 

most likely to occur with small sample sizes.  Although rare, however, 

under-dispersion can lead to incorrect parameter estimates and crash 

prediction (Cameron and Trivedi 1998; Oh et al. 2006; Park and Lord 

2007). 

 Small Sample Size: crash data collection process may be expensive, 

therefore crash data are sometimes characterized by a small number of 

observations (i.e. small sample size), which can produce low sample-

mean. Small samples can cause estimation problems in traditional count 

prediction models. For example, with small sample sizes, the maximum 

likelihood estimation of parameters could produce insufficient results 

(Wood 2002; Lord and Bonneson 2007). Also, Lord (2006) show that the 

dispersion parameter of the negative binomial model can be incorrectly 
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estimated when using data characterized by a small sample size and low 

sample mean. 

 Time Interval Variations: crash data are typically collected over some time 

period, such as one year, three years, and five years. Over the collection 

period, some explanatory variables and their relationship to the crash 

incidents may change, a reality that is not usually considered due to the 

lack of detailed data within the collection period. Ignoring within-period 

variation in explanatory variables may result in biased estimation of 

parameters, and incorrect prediction of crashes as a result of unobserved 

heterogeneity (Glenberg 1996; Lord and Bonneson 2007). 

 Temporal and Spatial Autocorrelations: the prediction of crash models can 

be improved when several years of crash data are utilized, such as a period 

of three years instead of one year (Mohammadi et al. 2014). However, this 

means that the same roadway entity will generate multiple observations, 

which will be correlated over time because many of the unobserved effects 

associated with a specific roadway entity will remain the same over time. 

This phenomenon is termed temporal autocorrelation, which can adversely 

affect the precision of parameter estimates. Similarly, correlation of 

observations over space can exist given that roadway entities may be in 

close proximity and may share unobserved effects. This phenomena is 

termed spatial autocorrelation and if not appropriately addressed, can also 

lead to incorrect parameter estimates (Gujarati 1992; Lord and Persaud 

2000; Wood 2002; Washington et al 2010; Lord and Mannering 2010; 
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Savolainen et al. 2011). 

 Omitted-Variables Bias: modeling crash prediction with few explanatory 

variables could produce simplified models with omitted-variables bias. 

Leaving out important explanatory variables can result in biased parameter 

estimates and incorrect inferences, especially if the omitted variable is 

correlated with variables included in the model, which is often the case 

(Arminger et al. 1995; Glenberg 1996; Cameron and Trivedi 1998; 

Caliendo et al. 2007; El-Basyouny and Sayed 2009; Geedipally et al. 

2012). 

 Under-Reporting: traffic crash data may suffer from under-reporting 

effects, especially for minor, and less severe crashes. The unknown 

parameters in the models are generally estimated assuming random 

sampling from the population, therefore, if under-reporting is not 

accounted for, then it could result in biased samples that are likely to 

produce incorrect parameters in the model-estimation process ( Glenberg 

1996; Elvik 2006; Caliendo et al. 2007; Anastasopoulos and Mannering 

2009). 

 Non-Linear Relationships Bias: many crash prediction models assume that 

explanatory variables influence the dependent variables in linear manner. 

However, it has been shown that non-linear functions can often better 

characterize the relationships between crash frequencies and explanatory 

variables. For example, using traffic flow as a measure of exposure, some 

have found that the crash prediction per unit of exposure becomes smaller 
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as traffic flow increases pointing to unobserved heterogeneity and possible 

other specification problems in the functional form of the model (Myers 

1990; Rosenkrantz 1997; Shankar et al. 1997; Lord and Persaud 2000; 

Wood 2002).  

 Endogeneity: endogeneity refers to the cases where explanatory variables 

are correlated with disturbance terms (i.e. unobserved heterogeneity), 

which could cause incorrect estimations and inferences. For example, a 

severity model that considers the presence of an airbag as an explanatory 

variable in a model of injury-severity outcomes. In this case, the risk of 

not using the airbag can be difficult to capture in the database, so it is 

generally captured as a part of the disturbance term, which could 

overestimate the airbag’s effectiveness (Savolainen et al. 2011). 

2.7: Review of Statistical Approaches of Crash Modeling 

There are different statistical approaches for crash modeling. The next sections 

present some of the mostly used methods. 

2.7.1: Multiple Linear Regression 

Crash prediction models have been widely used for decades. Early models were 

based on the simple multiple linear regression models assuming normally distributed 

errors. The general form of the linear crash prediction model can be expressed as follows:  

Y | θ ∼ Dist (θ) with θ = f (X, β, ε)                   (2.1)          

where, 

Y: the dependent variable (i.e. crash frequency), 
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θ: the crash dataset, 

Dist (θ): the model distribution, 

X: a vector representing different independent variables (i.e. risk factors), 

β : a vector of regression coefficients,  

f (.): link function that relates X and Y together, 

ε: the disturbance or error terms of the model.  

2.7.2: Poisson Regression 

Although multiple linear regression models have been widely applied, it has been 

found that crash occurrence can often be better fitted with a Poisson distribution.  Hence, 

generalized linear modeling variates of the Poisson regression model have been proposed 

to explore the relationship between the risk factors and crash frequency (Park and Lord 

2007; Ma et al. 2008; El-Basyouny and Sayed 2009). Poisson regression has been applied 

to a wide range of transportation count data, including crash frequency. A Poisson 

regression model is similar to an ordinary linear regression, with two exceptions. First, it 

assumes that the errors follow a Poisson (not normal) distribution. Second, rather than 

modeling the response variable Y as a linear function of the regression coefficients, it 

models the natural log of the response variable, ln(Y), as a linear function of the 

coefficients (Lord and Mannering 2010). The Poisson model can be expressed as follows: 

P (ni) = 
 𝜆𝑖  𝐸𝑋𝑃(−  𝜆𝑖 )

𝑛!
                         (2.2) 

where, 

 P (ni):  the probability of n crashes occurring on a highway segment i,  
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ni:  the number of observations per time period (such as a year), 

 λi :  the expected crash frequency on road segment i  per time period (i.e. the 

mean of distribution) which can be estimated as follows: 

λi = EXP (βXi)                                       (2.3) 

where 

Xi :  a vector of the independent variables (i.e. risk factors), 

β:  a vector of the estimates (coefficients) of the independent variables Xi. 

This model is estimable by standard maximum likelihood methods, with the log 

likelihood (LL) function given as: 

LL (β) = ∑ [ − 𝐸𝑋𝑃 (𝛽𝑋𝑖
𝑛
1 ) + 𝑛 (𝛽𝑋𝑖) − 𝐿𝑛 (𝑛!)]       (2.4) 

One assumption of Poisson Models is that the mean and the variance are equal, an 

assumption that is sometimes violated (Lord and Mannering 2010). This can be dealt with 

by using a dispersion parameter if the difference is small, or by using a negative binomial 

regression model if the difference is large (Hilbe 2007). 

2.7.3: Negative Binomial Regression Model (NB) 

In order to overcoming the problem of over-dispersion, the Negative Binomial 

(NB) distribution (also called the Poisson-Gamma) has been investigated as an alternative 

to  the Poisson distribution given that it relaxes the condition of mean equals to variance, 

and hence can take into account over-dispersion in the crash data counts (Lord and  

Mannering 2010). As a result, NB models have been widely applied in crash frequency 

modeling ( Kim et al. 2007; Lord and Bonneson 2007; El-Basyouny and Sayed 2009; 
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Daniels et al. 2010; Malyshkina and Mannering 2010; Geedipally et al. 2012).  

The NB uses a Gamma probability distribution and can relax the assumption of 

the mean equals the variance and, hence, the NB can accommodate over-dispersion that 

may exist in the crash data counts (Hilbe 2014). A primary source of over-dispersion is 

the clustering of data, and the possible omission of relevant independent variables 

influencing the Poisson rate across observations (Lord 2006). In order to obtain the NB 

model, the Poisson regression can be rewritten by adding an error term to its expected 

number of crashes, and becomes (Lord and Mannering 2010): 

λi = EXP (βXi + ԑi)               (2.5) 

where EXP (ԑi) is a gamma-distributed error with mean equals one and variance 

equals α. The addition of this term allows the variance VAR (ni) to differ from the mean 

E (ni) as shown in Eq. 2.6: 

VAR (ni) = E (ni) (1+ αE (ni))          (2.6) 

 This error term is called the over-dispersion parameter, and both α and β can be 

estimated from the maximum likelihood function. When α is zero, the model becomes 

Poisson regression, and if α is found to be significantly different from zero, then the NB 

regression can be used instead of the Poisson regression model to handle the over-

dispersion in crash data (Lord 2006). However, the NB model also has some limitations 

such as its inability to handle the case of under-dispersion of the data count, when the 

mean of the crash counts is higher than the variance (Lord 2006; Oh et al. 2006).    
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2.7.4: Poisson-Lognormal Regression Model 

To address the limitations of the NB models, the Poisson-lognormal model was 

introduced, in which the error term is Poisson-lognormal rather than gamma- distributed 

so as to better handle under-dispersed data counts (Aguero-Valverde and Jovanis 2008; 

Lord and Miranda 2008; Daniels et al. 2010). The Poisson-lognormal model is similar to 

the negative binomial model, however, the EXP (ԑi) term used in the model is lognormal-

rather than gamma-distributed. The Poisson-lognormal model provides more flexibility 

than the negative binomial model, but it does have some limitations, such as, its complex 

estimation of parameters due to the fact that the Poisson-lognormal distribution does not 

have a closed form (Miaou and Lord 2003; Lord and  Miranda 2008). 

2.7.5: Zero Inflated Poisson and Negative Binomial Regression Models 

Another widely used crash frequency modeling approach is the zero-inflated 

Poisson and zero-inflated negative binomial models, which have been introduced 

primarily to deal with the over-dispersion problem caused by excessive zeroes (i.e. 

locations where no crashes can be observed) in traffic data counts. The zero-altered 

procedure allows modeling the crash frequencies in two states, namely; the zero-crash 

state, and the non-zero crash state (where crash frequencies follow Poisson or negative 

binomial distribution), and the probability of a section being in zero or non-zero states 

can be found by a binary logit or probit model. In crash data, large numbers of zero 

observations are commonly present largely due to under reporting of minor crashes at 

these sites, the presence of dangerous crash sites (i.e. non-zero crash sites) in close 

proximity to the neighboring zero crash sites rendering the zero-crash sites to the safe 

mode, and given that some of zero crash sites may be free from only certain type of 
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crashes, not all types of crashes (Shankar et al. 1997).  Zero-inflated models attempt to 

account for such excess zeros. A dual state crash system may be assumed, in which one 

state is the zero crash state that can be regarded as virtually safe during the observation 

period, while the other state is the non-zero crash state. For example, consider vehicle 

crash occurring per year on 1-kilometer sections of highway. For straight sections of 

roadway with wide lanes, low traffic volumes, and no roadside objects, the likelihood of 

a vehicle crash occurring may be extremely small, but still present because an extreme 

human error could randomly cause an accident. These sections are considered to be in a 

zero-crash state that refer to situations where the likelihood of an event occurring is 

extremely rare in comparison to the non-zero state where crash occurrence is inevitable 

and follows some count distribution (Lambert 1992). To address the zero-inflated 

modeling processes, the zero-inflated Poisson (ZIP) and the zero-inflated negative 

binomial (ZINB) regression models have been developed. The probabilities of the two 

possible zero- and non-zero states are: pi for the zero crash state, and (1-pi) for the non-

zero crash state, and the overall probability of crashes is the sum of the probabilities from 

each state. The probability of crash frequency in the zero state can be modeled as: 

Pr (ni = 0) = pi + (1 - pi) Ri(0)        (2.7) 

where Ri (0) is the probability of zero crashes that occurs in the zero state. The 

probability of crash frequency in the non-zero state can be modeled as: 

Pr (ni > 0) = (1- pi) Ri (ni)              (2.8) 

where Ri (ni) is the probability of non-zero crashes in the non-zero state. 

Maximum likelihood estimates can be used to estimate the parameters of both ZIP and 
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ZINB regression models and confidence intervals are constructed by likelihood ratio 

tests. In zero-inflated models, the two state process is assumed to follow a logit (logistic) 

or probit (normal) probability process (Shankar et al. 1997). Zero-inflated models have 

shown great flexibility in both states, although their applicability to crash prediction has 

been criticized because of the long term mean equals to zero in the safe state, and hence, 

biased estimates may result (Lord and Mannering 2010; Malyshkina and Mannering 

2010).  

2.7.6: Conway-Maxwell Poisson Regression Models 

The Conway–Maxwell Poisson model has been recently investigated with respect 

to highway safety issues, but it’s application in crash frequency modeling has been rather 

limited (Kadane et al. 2006; Lord and Mannering 2010). Generalized additive models 

have been explored given that they can provide smoothing functions for the explanatory 

variables.  The Conway–Maxwell Poisson distribution is a generalization of the Poisson 

distribution that can handle both under-dispersed and over-dispersed crash data. The main 

advantage of this model is to handle the under-dispersion in crash data that cannot be 

modeled by the Poisson model or the Negative Binomial model. However, the low 

sample-mean, and small sample size of the under-dispersed crash data can influence the 

estimated parameters, and therefore, it has been limited in the application of crash 

frequency (Kadane et al. 2006; Lord 2006).   However, in practice, the estimation of 

these models can become very difficult as they require more parameters, a problem that 

has likely impeded their application to crash frequency prediction ( Zhang 2008; Li et al. 

2009).  
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2.7.7: Random-Parameter Models 

Random-parameters models have also been investigated to take the effect of the 

unobserved heterogeneity from one roadway site to another (Shankar and Mannering 

2008; Anastasopoulos and  Mannering 2009; Washington et al. 2010).   

The motivation for random-parameter models is to account for unobserved 

heterogeneity across observations. Random-parameter models can be derived by 

assuming that the estimated parameters vary across observations according to some 

distribution. Estimated parameters can be modeled as (Greene 2008): 

β n = β + ωn             (2.9) 

  where 

 βn : a vector of estimated parameters of  the n observations, 

ωn : a randomly distributed term.  

With this equation, the Poisson, and the Negative Binomial parameters become: 

λi |ωn = EXP (βn Xn)                     (2.10) 

λi | ωn = EXP (βn Xn + ԑn)          (2.11) 

2.7.8: Artificial Neural Networks and Fuzzy Logic models 

Given that a linear function may not sufficiently explain the relationship between 

the dependent variables and the associated independent variables in crash modeling, non-

linear approximators such as fuzzy logic and neural networks have also been explored. 

Artificial Neural Networks (ANNs) are a class of computational intelligence tools that 

can be used for prediction and classification problems. ANNs can model very complex 



www.manaraa.com

 

 

42 

 

non-linear functions to high accuracy levels using a process of learning that is similar to 

the learning procedure of the cognitive system in the human brain. The network body is 

composed of input layers, hidden layers, and output layers. These models can be trained 

to approximate any nonlinear function to a required degree of accuracy using a learning 

algorithm (such as back propagation) that would give the desired output, in a supervised 

learning process. ANNs have some advantages over the statistical models. For instance, 

regression models need a pre-defined relationship or functional form between the 

dependent variable (crash frequency) and the independent explanatory variables that can 

be estimated by some statistical approaches, whereas the ANNs do not require the 

establishment of these functional forms, and can be easily applied in the analysis. On the 

other hand the ANNs differ from the statistical models in that they behave as black-boxes 

and do not provide interpretation for the parameter estimates (Chang 2005; Riviere et al. 

2006; Xie and Zhang 2008). Fuzzy logic applications have increasingly been proven to 

have a significant crash-predicting capability in recent years (Wang et al. 2011). Fuzzy 

logic system is defined as the nonlinear mapping of an input data set to a scalar output 

data, and the first step of the process (known as fuzzification) consists of gathering a 

crisp set of input data that will be converted to a fuzzy set using fuzzy linguistic 

variables, fuzzy linguistic terms, and membership functions. After that, an inference is 

made based on a set of fuzzy rules, and then, the resulting fuzzy output is mapped to a 

crisp output using the membership functions, in the defuzzification step (Meng et al. 

2009). 
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2.7.9: Logit and Probit Models   

Logit and Probit models can be applied to study crash severity. Binary models 

consider two outcomes, and multinomial models consider three or more outcomes. In 

binomial logit or probit models, the dependent variable, Y, can take one of two values 0.0 

or 1.0. For example, injury or non-injury, fatal or non-fatal. The binomial logit model 

denotes 𝜋𝑖  = Pr (Yi = 1), allowing the logistic transformation of 𝜋 in the link function to 

produce the binomial logit function: 

Logit (𝜋i) = log [
𝜋𝑖

1− 𝜋𝑖
 ] = Xi β            (2.12) 

where, 

Xi : a vector of explanatory variables (i.e. risk factors), 

β: a vector of regression coefficients. 

As 𝜋 approaches zero, logit (𝜋) tends toward - ∞; and as  𝜋  approaches 1.0, 

logit (𝜋) tends toward + ∞ (Mannering and Grosdsky 1995). The binomial probit model 

is an alternative to the binomial logit model, in which the probit (𝜋𝑖) is the standard 

cumulative normal distribution function (ϴ -1) that can be expressed as: 

Probit (𝜋𝑖) = ϴ -1 (𝜋𝑖 ) = Xi β              (2.13) 

In practice, the logit model is preferred due to the simplicity of its probability 

distribution, and density functions (Washington et al. 2010; Greene 2012).  
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2.8: Sight Distance Analysis 

Roadway sight distance is a measure of roadway visibility, which is an important 

factor in the assessment of road safety. Greater visibility can provide motorists more time 

to avoid crashes and conflicts, facilitating safe and efficient operation. However, poor 

visibility can reduce the driver’s ability to react to changing conditions and is a 

significant factor in roadway crashes and near collisions. A driver’s ability to view 

ambient roadway conditions is necessary for safe operation of a vehicle. The roadway 

must have sufficient sight distance that drivers have the time to react to and avoid striking 

unexpected objects in their path. In addition, certain two-lane, two-way highways should 

also have adequate passing sight distance to enable drivers to use the opposing traffic 

lane for passing other vehicles without interfering with oncoming vehicles. Three 

different types of sight distance are often discussed in the literature: (1) the sight 

distances needed for stopping, applicable to all highway travels; (2) the sight distances 

needed for decisions at hazardous complex locations; and (3) the passing sight distance 

needed on two lane highways. 

2.8.1: Stopping Sight Distance (SSD) 

Stopping sight distance (SSD) reflects a distance within which a driver can 

effectively see an object in the roadway and stop their vehicle before colliding with the 

object (AASHTO 2011). The available sight distance on a roadway should be long 

enough to enable a vehicle traveling at or near the design speed to stop before reaching a 

stationary object in its path. Although greater lengths of visible roadway are desirable, 

the sight distance at every point along a roadway should be at least that needed for a 

below-average driver or vehicle to stop. Recommended protocols for calculating stopping 
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sight distances account for the basic principles of physics and the relationships between 

various design’s parameters. Stopping sight distance can be determined as the sum of two 

distances (AASHTO 2011), namely: 1) Reaction distance (the distance a vehicle travels 

from the moment a driver sees the object until the driver applies the brakes) and; 2) 

Braking distance (the distance a vehicle travels from the moment the brakes are applied 

until the vehicle comes to a complete stop). The following equation shows how SSD is 

typically computed by combining these two distances (AASHTO 2011): 

SSD = 0.278VT + 0.039 V2 /a                        (2.14) 

where:  

SSD = stopping sight distance, m;  

V = highway design speed, km/h;  

T = brake reaction time, seconds;   

a = deceleration rate, m/s2. 

AASHTO (2011) recommends a (2.5 seconds) as the driver’s reaction time, and 

(3.4 m/s2) as the deceleration rate for stopping sight distance calculations. Figure 2.1 

provides an illustration of the factors contributing to the AASHTO recommendations on 

SSD. Table 2.1 shows the SSD on level terrains. The recommended height of the driver’s 

eye above the road surface is (1.08 m) and the height of an object above the roadway is 

(0.6 m). 
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Figure 2.1:  AASHTO (2011) criteria for stopping sight distance   

Table 2.1: Stopping sight distance on level roadways 

Design Speed 
(km/h) 

Reaction 
Distance (m) 

Braking Distance 
(m) 

Calculated SSD 
(m) 

Design SSD 
(m) 

20 13.9 4.6 18.5 20 

30 20.9 10.3 31.2 35 

40 27.8 18.4 46.2 50 

50 34.8 28.7 63.5 65 

60 41.7 41.3 83.0 85 

70 48.7 56.2 104.9 105 

80 55.6 73.4 129.0 130 

90 62.6 92.9 155.5 160 

100 69.5 114.7 184.2 185 

110 76.5 138.8 215.3 220 

120 83.4 165.2 248.6 250 

130 90.4 193.8 284.2 285 
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2.8.1.1: Driver’s Eye Height for SSD 

The driver eye height of 1.08 m that is commonly recommended is based on 

research that suggests average vehicle heights have decreased to 1.30 m (4.25 ft) with a 

comparable decrease in average eye heights to 1.08 m (3.50 ft). For large trucks, the 

driver eye height ranges from 1.80 m to 2.40 m (3.50 ft to 7.90 ft). The recommended 

height for a truck driver for design is 2.33 m (7.60 ft) above the road surface. 

2.8.1.2: Object’s Height for SSD 

An object height of a 0.6 m (2.0 ft) is commonly selected based on studies that 

have indicated that objects less than 0.60 m in height are less likely to cause crashes. 

Therefore, an object height of 0.6 m is considered the smallest object that could pose risk 

to drivers. In addition, an object height of 0.60 m is a good representative of the height of 

automobile headlights and taillights (AASHTO 2011). 

2.8.1.3: Effect of Grades on SSD 

For roads having positive grades, braking distance can be calculated by the 

following equation (AASHTO 2011): 

db  = 
𝑉2

254[(
𝑎

9.81
)±𝐺]

      (2.15) 

where, 

db: Braking distance on grade, m; 

V: Design Speed, km/h; 

a: Deceleration rate, m/s2; 

G: Grade, rise/run, m/m. 
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The stopping distances needed on upgrades are shorter than on level roadways; 

those on downgrades are longer. The AASHTO stopping sight distances for various 

downgrades and upgrades are shown in Table 2.2. Passenger cars can use grades as steep 

as 4.0 to 5.0 percent without significant loss in speed below that normally maintained on 

level roadways. Operation of passenger cars on a 3.0 percent upgrade has only a slight 

effect on their speeds compared to operations on level terrain. On steeper upgrades, 

speeds decrease gradually with increases in the grade. On downgrades, passenger car 

speeds generally are slightly higher than on level terrains. Trucks generally increase speed 

by up to 5.0 percent on downgrades and decrease speed by 7.0 percent or more on 

upgrades as compared to their operation on level terrains (AASHTO 2011). 

Table 2.2: AASHTO (2011) stopping sight distance on grades 

Design 

Speed 

(km/h) 

Stopping Sight Distance (m) 

Downgrades Upgrades 

3% 6% 9% 3% 6% 9% 

20 20 20 20 19 18 18 

30 32 35 35 31 30 29 

40 50 50 53 45 44 43 

50 66 70 74 61 59 58 

60 87 92 97 80 77 75 

70 110 116 124 100 97 93 

80 136 144 154 123 118 114 

90 164 174 187 148 141 136 

100 194 207 223 174 167 160 

110 227 243 262 203 194 186 

120 263 281 304 234 223 214 

130 302 323 350 267 254 243 

 

2.8.1.4: SSD for Trucks 

Trucks are heavier than passenger cars; therefore, they need a longer distance to 

stop. However, it is believed that adjustment factors for trucks are not necessary since 
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visibility from a truck is typically better given that the driver is seated at a higher 

elevation above the roadway surface. Thus, this increase in the height of the driver 

substitutes the need for additional stopping sight distance for trucks (AASHTO 2011).  

2.8.1.5: Measuring and Recording Sight Distance  

In the field, stopping sight distance is measured along the travel path of vehicles 

and several methods are typically utilized. The first conventional procedure is called the 

walking method (Brown and Hummer 2000; Rose et al. 2004) that involves at least two 

individuals, sighting and a target rods, a measuring wheel, and a chain. The target rod is 

usually 1.3 m tall representing the vehicle’s height, and is usually painted orange on both 

the top portion and bottom 0.6 m of the rod. The bottom 0.6 m portion of the target rod is 

the height of object for measuring stopping sight distance. The sighting rod is 1.08 m tall 

representing the driver’s eye height recommended by AASHTO, and is usually painted 

black. From any point location along the road, the observer should sight from the top of 

the sighting rod while the assistant moves away in the direction of travel. The assistant 

stops when the bottom 0.6 m portion of the target rod is no longer visible. The distance 

from the disappearing point to the observer presents the available stopping sight distance. 

The analysis procedure consists of comparing the recommended sight distance from 

AASHTO tables to the measured sight distance in the field. Given that this measurement 

method requires the observer to be in the travel lane with their back to traffic, 

measurements along the shoulder are often substituted since they are safer for the 

personnel conducting the measurement. Similar in scope to the conventional approach, 

modern technologies have also been utilized to measure sight distance in the field. For 

instance, the two-vehicle method (Brown and Hummer 2000) employs two vehicles 
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equipped with sensors that measure their spacing, two-way communication device, and a 

paint sprayer. The vehicles calibrate their spacing to a desired sight distance. As the 

vehicles traverse a roadway, observers in the trailing vehicle note whether or not portions 

of the road meet the specified sight distance. Another similar method is the one-vehicle 

method that also has been used by some transportation agencies (Brown and Hummer 

2000; Rose et al. 2004). This method requires one employee in a vehicle equipped with a 

measuring device, and a paint sprayer. The driver moves slowly through the road, and 

watches the points at which the view opens up, and marks these points by paint. Another 

technique that has widely been used is the computer based method, using the global 

positioning systems (GPS) data (Polus et al. 2000). This method requires two vehicles, 

the lead vehicle equipped with modern telemetry, and the trailing vehicle equipped with 

logging laptop computer. The visibility of a target on the lead vehicle, monitored from 

the trailing vehicle, is recorded to determine if the available sight distance is sufficient. 

The field-based measurement approaches discussed are advantageous in that a diverse 

range of roadway conditions can be incorporated. That is, since there are observers on the 

ground, obstructions to visibility can be accounted for in a more precise manner. 

However, field measurement techniques are extremely time consuming and may require 

many years to conduct at a broad regional level.  Field measurements can also lack 

consistency based on the measurement technique and the characteristics of the crew 

conducting the task. Moreover, field measurements require that individuals work in 

traffic which presents a significant threat to their safety. As such, a measurement 

approach that entails a more remote analysis of sight distance and permits a broader, 

regional perspective would certainly be a valuable tool for providing an initial estimate of 
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sight distance. To address this need, a variety of approaches have been developed to use 

other data sources to estimate sight distance without using equipped vehicles or 

deploying individuals to the field. In this sense, Tsai et al. (2010) propose an algorithm to 

compute roadway geometric data, including roadway length, sight distance, and lane 

width from images, using emerging vision technology based on 2D, and 3D image 

reconstruction. Also, Shaker et al. (2011) use stereo high resolution satellite imagery for 

extracting the highway profiles and constructing 3D highway visualization model using a 

polynomial-based generic push broom model and rational function model to perform the 

sensor orientation. Methods that use Global Positioning Systems (GPS) data to estimate 

sight distance have also been developed. For instance, Ben-Arieh et al. (2004) used a 

GPS data and B-Spline method to model highway geometric characteristics that utilized 

B-spline curves and a piecewise polynomial function. Nehate and Rys (2006) used the 

geometric model developed by Ben-Arieh et al. (2004) to calculate the available sight 

distance on 3D combined horizontal and vertical alignment. They utilized a piecewise 

parametric equation in the form of cubic B-splines to represent the highway surface and 

sight obstructions, and the available sight distance was found analytically by examining 

the intersection between the sight line and the elements representing the highway surface 

and sight obstructions. Azimi and Hawkins (2013) proposed a method that uses vector 

product to derive the visibility of the centerline of the roadway from the spatial 

coordinates of a set of GPS data of the centerline, and defined the clear zone boundaries 

on both sides of the roadway to determine the available sight distance at each point of the 

roadway.  
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2.8.1.6: Sight Distance Obstructions 

On a crest vertical curve, the road surface at some point could limit the driver’s 

stopping sight distance. On horizontal curves, the obstruction that limits the driver’s sight 

distance may be some physical feature outside of the traveled way, such as a longitudinal 

barrier, a bridge-approach fill slope, a tree, foliage, or the back slope of a cut section. 

Thus, it is recommended to check all road construction plans for other obstructions to 

sight distance (AASHTO 2011). 

2.8.1.7: SSD on Horizontal Alignments 

When a vehicle travels in a circular path, it undergoes a centripetal acceleration 

that acts toward the center of curvature. This acceleration is sustained by a component of 

the vehicle’s weight related to the roadway super elevation, by the side friction developed 

between the vehicle’s tires and the pavement surface, or by a combination of the two, 

which is occasionally equals to the centrifugal force (AASHTO 2011). The design of 

roadway curves should be based on an appropriate relationship between design speed and 

radius of curvature and on their joint relationships with super elevation (roadway 

banking) and side friction. When a vehicle travels at constant speed on a curve super 

elevated so that the friction is zero, the centripetal acceleration is sustained by a 

component of the vehicle’s weight, and no steering force is needed. A vehicle traveling 

faster or slower than the balance speed develops tire friction as steering effort is applied 

to prevent movement to the outside or to the inside of the curve. From the basic laws of 

mechanics, the fundamental equation that governs vehicle operation on a horizontal curve 

is as follows (AASHTO 2011): 
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0.01𝑒+𝑓

1−0.01 𝑒𝑓
=

𝑣2

𝑔𝑅
=

0.0079𝑉2

𝑅
=  

𝑉2

127𝑅
                   (2.16) 

where, 

e: rate of roadway super elevation, percent; 

f: coefficient of side friction, unitless; 

v: vehicle speed, m/s; 

V: vehicle speed, km/h; 

g: gravitational constant, 9.81 m/s2; 

R: radius of the curve measured to the vehicle’s center of gravity, m. 

Values for maximum super elevation rate (e) and maximum side friction 

coefficient (f) can be determined from the AASHTO Green Book for curve design. Using 

these values in the curve formula results in determining a minimum curve radius for 

various design speeds (AASHTO 2011). The coefficient of friction f is the friction force 

divided by the component of the weight perpendicular to the pavement surface. The value 

of the product (e f) is always small. As a result, the (1 – 0.01ef) term is nearly equal to 

1.0 and is normally omitted in highway design. Omission of this term yields the 

following basic side friction equation, which is widely used in curve design (AASHTO 

2011): 

f = 
𝑉2

127 𝑅
− 0.01𝑒                    (2.17) 

          The minimum radius is a limiting value of curvature for a given design speed and 
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is determined from the maximum rate of super elevation and the maximum side friction 

coefficient. Use of sharper curvature for that design speed would call for super elevation 

beyond the limit considered practical or for operation with tire friction beyond what is 

considered comfortable by many drivers, or both. The minimum radius of curvature is 

based on a threshold of driver comfort that is suitable to provide a margin of safety 

against skidding and vehicle rollover. The minimum radius of curvature, Rmin can be 

determined directly from the following equation (AASHTO 2011): 

Rmin = 
𝑉2

127 ( 0.01 𝑒𝑚𝑎𝑥+ 𝑓𝑚𝑎𝑥) 
                  (2.18) 

If there are sight obstructions (such as walls, cut slopes, buildings, and barriers) 

on the inside of horizontal curves and their removal to increase sight distance is 

impractical, a design may need adjustment in the highway alignment. For general use in 

design of a horizontal curve, the horizontal sight line is a chord of the curve, and the 

stopping sight distance is measured along the centerline of the inside lane around the 

curve, as shown in Figure 2.2. The horizontal sight line offset (HSO) can be determined 

from Equation 2.19. The equation applies only to circular curves longer than the sight 

distance for the specified design speed (AASHTO 2011).  

HSO = 𝑅[ 1 − 𝑐𝑜𝑠 (
28.65 𝑆

𝑅
 )]                         (2.19) 

where, 

HSO: Horizontal Sightline Offset, m; 

S: Stopping Sight Distance, m; 

R: Radius of curve, m. 
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Where adequate stopping sight distance is not available because of a sight 

obstruction, alternative designs must be used, such as increasing the offset to the 

obstruction, increasing the radius, or reducing the design speed (AASHTO 2011). 

 

Figure 2.2: AASHTO (2011) SSD criteria on Horizontal alignments 

2.8.1.8: SSD on Crest Vertical Curves 

Crest vertical curves should be designed to provide at least the stopping sight 

distance that is a major design control. Minimum lengths of crest vertical curves based on 

sight distance criteria generally are satisfactory from the standpoint of safety, comfort, 

and appearance (AASHTO 2011). The basic equations for length of a crest vertical curve 

in terms of algebraic difference in grade and sight distance criteria are as follows 

(AASHTO 2011): 

when S is less than L: 

L  =  
𝐴𝑆2

100 (√2ℎ1+ √2ℎ2)2 
                     (2.20) 
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when S is greater than L: 

L = 2𝑆 −  
200(√ℎ1 + √ℎ2)2

𝐴
                  (2.21) 

where, 

L: Length of vertical curve, m; 

A: Algebraic difference in grade, percent; 

S: Sight distance, m; 

h1: Driver’s Eye Height above roadway surface, m; 

h2: Object’s Height above roadway surface, m. 

When the height of the eye and the height of object are 1.08 and 0.60 m (3.50 ft 

and 2.0 ft), respectively, as used for stopping sight distance, the equations become: 

when S is less than L: 

L = 
𝐴𝑆2

658
                     (2.22) 

when S is greater than L: 

L = 2S - 
658

𝐴
              (2.23) 

Rate of vertical curvature, K, is usually used in the design calculation, which is 

the length of curve per percent algebraic difference in intersecting grades, (i.e. K = L/A). 

Figure 2.3 shows the AASHTO parameters used in determining the length of a crest 

vertical curve to provide stopping sight distance. For night driving on highways without 

lighting, the headlights of the vehicle directly illuminate the length of visible roadway. 
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Thus, stopping sight distance values exceed road-surface visibility distances afforded by 

the low-beam headlights regardless of whether the roadway profile is level or curving 

vertically. Since the headlight, mounting height (typically about 0.60 m) is lower than the 

driver eye height used for design (1.08 m), the sight distance to an illuminated object is 

controlled by the height of the vehicle headlights rather than by the direct line of sight. In 

addition, drivers are aware that visibility at night is less than during the day, regardless of 

road features, and they may therefore be more attentive and alert (AASHTO 2011). 

 

Figure 2.3: SSD parameters used in design of crest vertical curves 

2.8.1.9: SSD on Sag Vertical Curves 

Design controls for sag vertical curves differ from those for crests, and separate 

design values are needed. The headlight sight distance is used to determine the length of a 

sag vertical curve, and the values determined for stopping sight distances are within these 

limits. As in the case of crest vertical curves, it is convenient to express the design control 

in terms of the K rate for all values of A. When a vehicle traverses a sag vertical curve at 

night, the portion of highway lighted ahead is dependent on the position of the headlights 

and the direction of the light beam. A headlight height of 0.60 m (2.0 ft) and a 1-degree 
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upward divergence of the light beam from the longitudinal axis of the vehicle are 

assumed in the design (AASHTO 2011). The following equations are used to determine 

the length of sag vertical curves based on sight distance criteria (AASHTO 2011): 

when S is less than L: 

L = 
𝐴𝑆2

200 [ 0.6+𝑆 (𝑡𝑎𝑛 1)]
=  

𝐴𝑆2

120+3.5 𝑆
                  (2.24) 

when S is greater than L: 

L = 2S - 
200 [ 0.6+𝑆 (𝑡𝑎𝑛 1)]

𝐴
= 2𝑆 −  

120+3.5 𝑆

𝐴
            (2.25) 

where, 

L: Length of sag vertical curve, m; 

A: Algebraic difference in grades, percent; 

S: Stopping sight distance (Light beam distance), m. 

The light beam distance is approximately the same as the stopping sight distance, 

and it is appropriate to use stopping sight distances for different design speeds as the 

value of S in the above equations (AASHTO 2011). Figure 2.4 shows the parameters used 

in the design of a sag vertical curve. 
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F 
Figure 2.4: SSD parameters used in design of sag vertical curves 

2.8.1.10: SSD at Under Crossings 

Sag vertical curves under passing a structure should be designed to provide the 

minimum recommended stopping sight distance for sag curves (AASHTO 2011). The 

general equations for sag vertical curve length at under crossings are (AASHTO 2011): 

when S is less than L: 

L = 
𝐴𝑆2

800 [ 𝐶− 
ℎ1 − ℎ2

2
 ]

                         (2.26) 

when S is greater than L: 

L = 2S - 
800 [ 𝐶− 

ℎ1− ℎ2 
2

]

𝐴
                  (2.27) 

where, 

L: Length of Sag Vertical Curve, m; 

S: Stopping Sight Distance, m; 

C: Vertical Clearance, m; 
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h1: height of eye, m; 

h2: height of object, m; 

A: Algebraic difference in grades, percent. 

AASHTO uses an eye height of 2.4 m (8.0 ft) for a truck driver and an object 

height of 0.6 m (2.0 ft) for the taillights of a vehicle. Substituting these values, the above 

equations become (AASHTO 2011):  

when S is less than L: 

L = 
𝐴𝑆2

800 ( 𝐶−1.5)
                       (2.28) 

when S is greater than L: 

L = 2S - 
800 ( 𝐶−1.5)

𝐴
               (2.29) 

Figure 2.5 shows the AAHSTO parameters used in the design of sag vertical curves 

under passing a structure. 

 

Figure 2.5: SSD parameters used in design of under passing sag curves 
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2.8.2: Decision Sight Distance (DSD) 

While stopping sight distances are usually sufficient to allow average drivers to 

come to a complete stop under ordinary circumstances, however, greater distances are 

preferred where drivers must make instantaneous decisions, where information is difficult 

to perceive, or when unexpected or unusual maneuvers are needed. In these 

circumstances, decision sight distance provides the greater visibility distance that drivers 

need. Decision sight distance is defined as the distance required for a driver to detect an 

unexpected source or hazard in a roadway, recognize the threat potential, select an 

appropriate speed and path, and complete the required maneuver safely and efficiently 

(AASHTO 2011). Most traffic situations presented on highways require stopping sight 

distance at a minimum; however, decision sight distance is also recommended for safer 

and smoother operations. For example, long traffic queues, problems of driver 

expectancy, and high traffic volumes require more time and distances to accommodate 

normal vehicle maneuvers of lane changing, speed changes and path changes. 

2.8.2.1: Comparison between SSD and DSD 

The distinction between stopping sight distance and decision sight distance must 

be well understood (AASHTO 2011). Stopping sight distance is applied where only one 

obstacle must be seen in the roadway and dealt with. Decision sight distance applies 

when traffic conditions are complex, and driver expectancies are different from normal 

traffic situation. The difference between stopping in the context of decision sight distance 

and stopping sight distance is that the vehicle should stop for some complex traffic 

condition, such as a queue of vehicles or hazardous conditions, rather than an object in 

the roadway. The values of decision sight distance are greater than the values of stopping 
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sight distance because they provide the driver an additional margin for error and afford 

sufficient length to maneuver at the same or reduced speed rather than to stop. The added 

complexity in DSD requires additional perception-reaction time prior to applying the 

brakes to begin to slow the vehicle to a stop or change the speed or travel path. This 

allows the driver additional time to detect and recognize the roadway or traffic situation, 

identify alternative maneuvers, and initiate a response on the highway. AASHTO (2011) 

suggest that about 3.0 to 9.0 seconds are required for detecting and understanding the 

unexpected traffic situation with an additional 5.0 to 5.5 seconds required to perform the 

appropriate maneuver compared to only 2.5 seconds as perception reaction time in 

stopping sight distance calculations. Similar to the stopping sight distance, AASHTO 

(2011) recommends assuming the driver’s eye height at 1.08 m (3.5 ft), and the object 

height as 0.60 m (2.0 ft) for decision sight distance calculations. 

2.8.2.2: Cases of DSD 

Decision sight distance is different for urban versus rural conditions and for 

stopping versus maneuvering within the traffic stream conditions. Consequently, there are 

five different cases for decision sight distance (AASHTO 2011) as follows: 

 Avoidance Maneuver A: Stop on Rural Road – (t = 3.0 sec), 

 Avoidance Maneuver B: Stop on Urban Road – (t = 9.1 sec), 

 Avoidance Maneuver C: Speed/Path/Direction Change on Rural Road – (t 

between 10.2 and 11.2 sec), 

 Avoidance Maneuver D: Speed/Path/Direction Change on Suburban Road 

– (t between 12.1 and 12.9 sec),  
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 Avoidance Maneuver E: Speed/Path/Direction Change on Urban Road – (t 

between 14.0 and 14.5 sec). 

2.8.2.3: DSD Calculations for Stop Maneuvers A and B 

The available decision sight distance for the stop avoidance maneuvers A and B 

are determined as the sum of two distances (AASHTO 2011), namely: 1) Reaction 

distance (the distance a vehicle travels from the moment a driver detects a condition or 

hazard in the roadway until the driver applies the brakes) and; 2) Braking distance (the 

distance a vehicle travels from the moment the brakes are applied until the vehicle comes 

to a complete stop). DSD can be computed as a function of these two distances 

(AASHTO 2011): 

DSD = 0.278VT + 0.039 V2/a                        (2.30) 

where:  

DSD = decision sight distance, m;  

V = design speed, km/h;  

T = Maneuver time, seconds;   

a = deceleration rate, m/s2  

AASHTO recommends a (3.0 seconds) as a driver’s reaction time for rural 

highways, (6.0 seconds) for sub urban highways, and a (9.1 seconds) for urban highways. 

AASHTO uses (3.4 m/s2) as the deceleration rate for decision sight distance calculations. 

2.8.2.4: DSD Calculations for Maneuvers C D and E 

The available decision sight distances for avoidance maneuvers C, D, and E are 

determined as follows (AASHTO 2011): 
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DSD = 0.278VT                      (2.31) 

where:  

DSD = decision sight distance, m;  

V = design speed, km/h;  

T = Maneuver time, seconds.   

AASHTO recommends a (10.2 to 11.2 seconds for maneuver C on rural roads, a 

2.1 to 12.9 seconds for maneuver D on suburban roads, and a 14.0 to 14.5 seconds for 

maneuver E on urban roads) as the driver’s reaction time. Figure 2.6 provides an 

illustration of the recommended AASHTO criteria on DSD. The recommended height of 

the driver’s eye above the road surface is (1.08 m) and the height of an object above the 

roadway is (0.6 m). Table 2.5 shows the AASHTO recommended decision sight distances 

for various maneuvers. As can be seen in the table, shorter distances are generally needed 

for rural roads and for locations where a stop is the appropriate maneuver. If it is not 

practical to provide decision sight distance on some highways, attention should be given 

to the use of suitable traffic control devices for providing advance warning of the 

conditions that are likely to be encountered (AASHTO 2011).  

Figure 2.6: Recommended AASHTO criteria on DSD 
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Table 2.5: AASHTO recommended decision sight distance 

Design Speed     

(km/h) 

Decision Sight Distance, meters 

Avoidance Maneuver 

A B C D E 

50 70 155 145 170 195 

60 95 195 170 205 235 

70 115 235 200 235 275 

80 140 280 230 270 315 

90 170 325 270 315 360 

100 200 370 315 355 400 

110 235 420 330 380 430 

120 265 470 360 415 470 

130 305 525 390 450 510 

 

2.8.3: Passing Sight Distance (PSD) 

Passing sight distance (PSD) is the distance that drivers must be able to see along 

the road ahead to safely and efficiently initiate and complete passing maneuvers of 

slower vehicles on two-lane, two-way highways using the lane normally reserved for 

opposing traffic (AASHTO 2011). PSD is a consideration along two-lane roads on which 

drivers may need to assess whether to initiate, continue, and complete or abort passing 

maneuvers. In the US, many roads are two-lane, two-way highways on which faster 

vehicles frequently overtake slower moving vehicles. In order to secure a safe passing 

maneuver, the passing driver should be able to see a sufficient distance ahead, clear of 
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traffic, to complete the passing maneuver without cutting off the passed vehicle before 

meeting an opposing vehicle (AASHTO 2011). Therefore, passing sight distance (PSD) 

is considered an important factor in both the design of two-lane, two-way (TLTW) 

highways and the marking of passing zones (PZ) and no-passing zones (NPZ) on two-

lane, two-way highways. The efficiency of traffic operation of many TLTW highways 

depends on how often faster drivers are able to pass slower drivers. For example, where 

faster drivers encounter a slower driver but are unable to pass, vehicle platoons are built 

up, and cause a decrease in the level of service and inversely affect safety, fuel 

consumption and emissions. The capacity of a two-lane, two-way road is increased if a 

large percentage of the roadway's length can be used for passing maneuvers (Haneen and 

Tomer 2010). 

2.8.3.1: PSD on Multilane Highways 

There is no need to consider passing sight distance on multilane highways that 

have two or more traffic lanes in each direction of travel, because passing maneuvers are 

expected to occur within the limits of the traveled way for each direction of travel. 

However, multilane roadways should have continuously adequate stopping sight distance, 

with greater-than-design sight distances preferred (AASHTO 2011). 

2.8.3.2: Marking of Passing Zones on Two-Lane Highways 

The design of two-lane highway is based on the AASHTO Green book criteria, 

however, the marking of passing zones (PZs) and No-passing zones (NPZs) is based on 

the Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD) 

criteria. The use of separate PSD criteria for design and marking is justified based on 

different needs in design and traffic operation (Harwood et al. 2009). Since the current 
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US highway system operates with relatively low level of crashes related to passing 

maneuvers and PSD, which indicates that the highway system can be operated safely with 

passing and no-passing zones marked with the current MUTCD criteria, therefore 

changing the current MUTCD PSD criteria to equal the AASHTO criteria, or some 

intermediate value, is not recommended because it would decrease the frequency and 

length of passing zones on two-lane, two-way highways. This would decrease the traffic 

level of service and might encourage illegal passes at locations where passing maneuvers 

are currently legal (Hardwood et al. 2009). As such, the AASHTO Green Book (2011) 

has adapted the MUTCD PSD values for the design of TLTW highways. 

2.8.3.3: Driver’s Eye Height and Object’s Height for PSD 

AASHTO Green book uses both the height of the driver’s eye and the object 

height as 1.08 m (3.5 ft) above the road surface (AASHTO 2011). This object height is 

based on a vehicle height of 1.33 m (4.35 ft), which represents the 15th percentile of 

vehicle heights in the current passenger car population, less an allowance of 0.25 m (0.85 

ft), which is a near-maximum value for the portion of the vehicle height that needs to be 

seen for another driver to recognize a vehicle. The choice of an object height equal to the 

driver eye height makes design of passing sight distance reciprocal (i.e. when the driver 

of the passing vehicle can see the opposing vehicle, the driver of the opposing vehicle can 

also see the passing vehicle). Passing sight distances calculated on this basis are also 

considered adequate for night conditions because headlight beams of an opposing vehicle 

generally can be seen from a greater distance than a vehicle can be recognized in the 

daytime (AASHTO 2011). 
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2.8.3.4: PSD Model Assumptions  

While there may be occasions, where multiple passing occurs when two or more 

vehicles pass a single vehicle or a single vehicle passes two or more vehicles. However, it 

is not practical to assume such conditions in developing minimum passing sight distance 

criteria. Instead, PSD is determined for a single vehicle passing a single vehicle 

(AASHTO 2011). Longer passing sight distances are recommended in the design and 

these locations can accommodate for an occasional multiple passing. AASHTO (2011) 

uses two theoretical models for the sight distance needs of passing drivers based on the 

assumption that a passing driver will abort the passing maneuver and return to his or her 

normal lane behind the overtaken vehicle if a potentially conflicting vehicle comes into 

view before reaching a critical position in the passing maneuver beyond which the 

passing driver is committed to complete the maneuver. The Glennon (1998) model 

assumes that the critical position occurs where the passing sight distance to complete the 

maneuver is equal to the sight distance needed to abort the maneuver. The Hassan et al. 

(1996) model assumes that the critical position occurs where the passing sight distances 

to complete or abort the maneuver are equal or where the passing and passed vehicles are 

abreast, whichever occurs first (AASHTO 2011). The following assumptions are made 

regarding the driver behavior in the passing maneuvers and PSD calculations based on 

the Glennon (1998) and Hassan et al. (1996) models (AASHTO 2011): 

 The speeds of the passing and opposing vehicles are equal to the design speed. 

 The overtaken vehicle travels at uniform speed. 

  The Speed differential between the passing and overtaken vehicles is 19 km/h (12 

mph). 
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  The passing vehicle has sufficient acceleration capability to reach the specified 

speed differential relative to the overtaken vehicle by the time it reaches the 

critical position, which generally occurs about 40 percent of the way through the 

passing maneuver. 

 The lengths of the passing and overtaken vehicles are 5.8 m (19.0 ft). 

 The passing driver’s perception-reaction time in deciding to abort passing a 

vehicle is 1.0 sec. 

 If a passing maneuver is aborted, the passing vehicle will use a deceleration rate 

of 3.4 m/s2 (11.2 ft/s2), the same deceleration rate used in stopping sight distance 

criteria. 

 For a completed or aborted pass, the space headway between the passing and 

overtaken vehicles is 1.0 sec. 

 The minimum time clearance between the passing and opposed vehicles at the 

point at which the passing vehicle returns to its normal lane is 1.0 sec. 

2.8.3.5: PSD Calculations on Two-Lane Highways 

The latest AASHTO Green Book of (2011) does not provide specific formulae for 

calculating the required PSD, however, previous versions of the Green Book (AASHTO 

2001 and 2004) use the minimum passing sight distance for TLTW highways as the sum 

of the following four distances: 

1) d1 = Distance traversed during perception and reaction time and during the initial 

acceleration to the point of encroachment on the opposing lane, and is calculated 

as follows: 
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d1 = 0.278ti [v – m + (ati / 2)]                      (2.32) 

where; 

ti = time of initial maneuver, ranges from (3.6 to 4.5) sec, 

a = average acceleration, ranges from (2.25 to 2.41) km/h/s, 

v = average speed of passing vehicle (km/h), 

m = difference in speed of overtaken vehicle and passing vehicle (km/h). 

2) d2 = Distance traveled while the passing vehicle occupies the left lane, and is 

determined as follows: 

d2 = 0.278vt2                       (2.33) 

where; 

t2 = time passing vehicle occupies the left lane, ranges from (9.3 to 11.3) sec, 

v = average speed of passing vehicle (km/h) 

3) d3 = Distance between the passing vehicle at the end of its maneuver and the 

opposing vehicle (the clearance length), ranges from (30.0 to 90.0) m. 

4) d4 = Distance traversed by an opposing vehicle for two-thirds of the time the 

passing vehicle occupies the left lane, or 2/3 of d2 above, and ranges from (97.0 

to 209.0) m. Figure 2.7 shows the AASHTO 2004 model for calculating PSD. 
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       Figure 2.7: AASHTO (2004) model for PSD calculations 

Table 2.6 shows the minimum values of PSD required for the design of two-

lane highways based on AASHTO 2011 Green Book. These values assume that a 

passing driver will abort the passing maneuver and return to his or her normal lane 

behind the overtaken vehicle if a potentially conflicting vehicle comes into view 

before reaching a critical position in the passing maneuver beyond which the passing 

driver is committed to complete the maneuver (AASHTO 2011).  

      Table 2.6: Minimum PSD values for design of two-lane highways 

Design 

Speed 

(km/h) 

Assumed Speeds (km/h) Minimum Passing Sight 

Distance (m) 
Overtaken 

Vehicle 

Passing 

Vehicle 

30 11 30 120 

40 21 40 140 

50 31 50 160 

60 41 60 180 

70 51 70 210 
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80 61 80 245 

90 71 90 280 

100 81 100 320 

110 91 110 355 

120 101 120 395 

130 111 130 440 

      Source: AASHTO Green Book, 2011, Table 3-4. 

2.8.3.6: Warrants for No-Passing Zones 

Each passing zone along a length of roadway with sight distance ahead should be 

equal to or greater than the minimum passing sight distance should be as long as practical 

(AASHTO 2011). The criteria for marking passing and no-passing zones on two-lane 

highways are established by the MUTCD. Passing zones are not marked directly. Rather, 

the warrants for no-passing zones are set by the MUTCD, and passing zones merely 

happen where no-passing zones are not warranted (MUTCD 2012). Table 2.7 shows the 

MUTCD PSD warrants for no-passing zones. These criteria are based on prevailing off-

peak 85th-percentile speeds rather than the design speeds. 

Table 2.7: MUTCD warrants for NPZs 

85th percentile speed Limit (km/h) Minimum Passing Sight Distance (m) 

40 140 

50 160 

60 180 

70 210 

80 245 

90 280 

100 320 

110 355 

120 395 

130 440 
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2.8.3.7: Minimum Lengths of PZs 

The MUTCD uses a minimum passing zone length of 120 m to 240 m (400 ft to 

800 ft) depending on the 85th percentile speed limit, (i.e. where two no-passing zones 

come within 120 m to 240 m of one another, the no-passing barrier stripe should be 

continued between them). Table 2.8 shows the minimum passing zone Lengths to be 

Included in marking of PZs and NPZs (MUTCD 2012; AASHTO 2011). Figure 2.8 

shows the AASHTO and MUTCD criteria for PSD and marking of NPZs. 

Table 2.8: Minimum lengths of PZs 

85th Percentile Speed Limit (km/h) Minimum Passing Zone Length (m) 

40 140 

50 180 

60 210 

70 240 

80 240 

90 240 

100 240 

110 240 

120 240 

 

 

 Figure 2.8: AASHTO and MUTCD criteria for PSD and marking of NPZs 
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2.8.3.8: PSD on Horizontal Curves 

The minimum passing sight distance for a two-lane road is greater than the 

minimum stopping sight distance at the same design speed (AASHTO 2011). To stick 

with those greater sight distances, Equation 18.2 for SSD on curves is directly 

applicable to passing sight distance but is of limited practical value except on long 

curves, because it would be difficult to maintain passing sight distance on other than 

very flat curves. Therefore, design for passing sight distance should be only limited to 

tangents and very flat curves. Even in level terrain, provision of passing sight distance 

would need a clear area inside each curve that would extend beyond the normal right-

of-way line (AASHTO 2011). 

2.8.3.9: PSD on Crest Vertical Curves 

Length values of crest vertical curves for passing sight distance differ from those 

for stopping sight distance because of the different sight distance and object height 

criteria. Using the 1.08 m (3.50 ft) height of object results in the following formulas 

(AASHTO 2011): 

when S is less than L: 

L = 
𝐴𝑆2

864
                                 (2.34) 

when S is greater than L: 

L = 2S - 
864

𝐴
                    (2.35) 
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               where, 

L: Length of vertical curve, m; 

A: Algebraic difference in grade, percent; 

S: Passing sight distance, m. 

The minimum lengths of crest vertical curves are substantially longer than those 

for stopping sight distances (AASHTO 2011). The extent of difference is evident by the 

values of K, or length of vertical curve per percent change in A. Figure 2.9 shows the 

parameters used in determining the length of crest vertical curve based on PSD. Table 2.9 

shows the minimum lengths of crest vertical curve as determined by PSD. Generally, it is 

impractical to design crest vertical curves that provide passing sight distance because of 

high cost and the difficulty of fitting the resulting long vertical curves to the terrain. 

Normally, passing sight distance is provided only at locations where combinations of 

alignment and profile do not need significant grading (AASHTO 2011). 

 

 

Figure 2.9: PSD parameters on crest vertical curves 
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Table 2.9: PSD design controls for crest vertical curves  

Design Speed (km/h) Passing Sight Distance (m) Rate of Vertical Curvature, K 

30 120 17 

40 140 23 

50 160 30 

60 180 38 

70 210 51 

80 245 69 

90 280 91 

100 320 119 

110 355 146 

120 395 181 

130 440 224 

 

 

 

 

 

F 
2.9: Temporal Autocorrelation 

Temporal autocorrelation (i.e. serial correlation) is a special case of correlation, 

and refers not to the relationship between two or more variables, but to the relationship 

between successive values of the same variable. Temporal autocorrelation is closely 

related to the correlation coefficient between two or more variables, except that in this 

case we do not deal with variables X and Y, but with lagged values of the same variable. 

Most regression methods that are used in crash modeling assume that the error terms are 

independent from one another, and they are uncorrelated. This assumption is formally 

expressed (King 1981) as: 

E (ԑi ԑj) = 0.0 for all i ≠ j                (2.36) 

where,  

E: the expected value of all pair-wise products of error terms, 

ԑi ԑj: error terms of the i and j observations respectively, 

which means that the expected value of all pair-wise products of error terms is 
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zero, and when the error terms are uncorrelated, the positive products will cancel those 

that are negative leaving an expected value of 0.0 (King 1981). If this assumption is 

violated, the standard errors of the estimates of the regression parameters are significantly 

underestimated which leads to erroneously inflated coefficients values, and incorrect 

confidence intervals. The presence of correlated error terms means that these types of 

inferences cannot be made reliably (Anderson 1984). The violation of this assumption 

occurs because of some temporal (time) component (i.e. heterogeneity due to time) that 

can affect the observations drawn across the time, such as time series data, panel data in 

the form of serial correlation, and any other dataset that might be collected over a period 

of time.  In this context, the error in a first time period influences the error in a 

subsequent time period (either the previous period, or the next period or beyond) (King 

1983). For example, we might expect the disturbance (i.e. error term) in year t to be 

correlated with the disturbance in year t-1 and with the disturbance in year t+1, t+2, 

and so on. If there are factors responsible for inflating the observation at some point in 

time to an extent larger than expected (i.e. a positive error), then it is reasonable to expect 

that the effects of those same factors linger creating an upward (positive) bias in the error 

term of a subsequent period. This phenomenon is called positive first-order 

autocorrelation, which is the most common manner in which the assumption of 

independence of errors is violated. For instance, if a dataset influenced by quarterly 

seasonal factors, then a resulting model that ignores the seasonal factors will have 

correlated error terms with a lag of four periods. 
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2.9.1: Sources of Temporal Autocorrelation 

Temporal autocorrelation can arise from omitted explanatory variables, 

misspecification of the model form, and misspecification of the error terms. These will be 

discussed below in more detail. 

2.9.1.1: Omitted Explanatory Variables  

Omission some important explanatory variables can create temporal 

autocorrelation that can produce biased parameter estimates and incorrect inferences, 

especially if the omitted variable is correlated with variables included in the model (King 

1981; Cameron and Trivedi 1998; Caliendo et al. 2007; Greene 2008). 

2.9.1.2: Misspecification of the Mathematical Form  

The model misspecification generates heterogeneity that can create temporal 

autocorrelation. For example, if a linear form of the model is specified when the true 

form of the model is non-linear, the resulting errors may reflect some temporal 

autocorrelation (Gujarati 1992; Miaou et al. 2003; Lord and Bonneson 2007; Hilbe 2014). 

2.9.1.3: Misspecification of The Error Term 

Successive values of the error term may be related due to some purely random 

factors, such as changes in weather conditions, economic factors, and other unaccounted 

for variables, which could have changing effects over successive periods.  In such 

instances, the value of the error term in the model could be misspecified (King 1983). 

2.9.2: Structure of temporal autocorrelation 

There are different structure types of temporal autocorrelation: 1st order, 2nd order, 

and so on. The form of temporal autocorrelation that is encountered most often is called 
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the first order serial correlation in the first autoregressive term, which is denoted by AR 

(1).  The AR (1) autocorrelation assumes that the disturbance in time period t (current 

period) depends upon the disturbance in time period t-1 (previous period) plus some 

additional amount, which is an error, and can be modeled as (King 1983): 

ԑt = ρ ԑ t-1 + ∈t                          (2.37) 

where, 

ԑt : the disturbance in time period t, 

ԑ t-1 : the disturbance in time period t-1, 

ρ: the autocorrelation coefficient, 

∈t  :  the model error term. 

The parameter ρ can take any value between negative one and positive one.  If ρ 

> 0, then the disturbances in period t are positively correlated with the disturbances in 

period t-1. In this case, positive autocorrelation exists which means that when 

disturbances in period t-1 are positive disturbances, then disturbances in period t tend to 

be positive. When disturbances in period t-1 are negative disturbances, then disturbances 

in period t tend to be negative. Temporal datasets are usually characterized by positive 

autocorrelation. If ρ < 0, then the disturbances in period t are negatively correlated with 

the disturbances in period t-1. In this case there is negative autocorrelation. This means 

that when disturbances in period t-1 are positive disturbances, then disturbances in period 

t tend to be negative. When disturbances in period t-1 are negative disturbances, then 
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disturbances in period t tend to be positive.   

The second order serial correlation is called the second-order autoregressive 

process or AR (2). The AR (2) autocorrelation assumes that the disturbance in period t is 

related to both the disturbance in period t-1 and the disturbance in period t-2, and can be 

modeled as (King 1983): 

ԑt = ρ1 ԑ t-1 + ρ2 ԑ t-2 + ∈t                       (2.38) 

 where,  

ρ1: the autocorrelation coefficient in time period t-1. 

ρ1: the autocorrelation coefficient in time period t-2. 

The disturbance in period t depends upon the disturbance in period t-1, the 

disturbance in period t-2, and some additional amount, which is an error (∈t ). In a 

similar manner, the temporal autocorrelation can be extended to the ρth order 

autocorrelation AR (ρ). However, the most often used temporal autocorrelation is the 

first-order autoregressive process (King 1983).   

2.9.3: Detection of Temporal Autocorrelation   

There are several ways to detect the existence of the temporal autocorrelation in 

the dataset, including the residuals scatter plots, the Durbin-Watson test, the Durbin h 

test, the Breusch-Godfrey test, the Ljung-Box Q test, and correlograms. These will be 

described in detail below. 
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2.9.3.1: Scatter Plot of Residuals 

The error for the ith observation in the dataset is usually unknown and 

unobservable.  However, the residual for this observation can be used as an estimate of 

the error, then the residuals can be plotted against the variables that may be related to 

time. The residual would be measured on the vertical axis. The temporal variables such 

as, years, months, or days would be measured on the horizontal axis. Next, the residual 

plot can be examined to determine if the residuals appear to exhibit a pattern of temporal 

autocorrelation. If the data are independent, then the residuals should be randomly 

scattered about 0.0. However, if a noticeable pattern emerges (particularly one that is 

cyclical or seasonal) then temporal autocorrelation is likely an issue. It must be 

emphasized that this is not a formal test of serial correlation. It would only suggest 

whether temporal autocorrelation may exist. We should not substitute a residual plot for a 

formal test (King 1981; Hilbe 2014).   

2.9.3.2: The Durbin-Watson (DW) Test 

The most often used test for first order temporal autocorrelation is the Durbin-

Watson DW test (Hilbe 2014). The DW test is a measure of the first order autocorrelation 

and it cannot be used to test for higher order temporal autocorrelation. The DW test is 

constructed to test the null and alternative hypotheses regarding the temporal 

autocorrelation coefficient (ρ): 

H0:  ρ = 0.0,   Ha:  ρ ≠ 0.0                 (2.39) 

The null hypothesis of ρ = 0.0 means that the error term in one period is not 
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correlated with the error term in the previous period, while the alternative hypothesis of ρ 

≠ 0.0 means the error term in one period is either positively or negatively correlated with 

the error term in the previous period. To test the hypothesis, the DW test statistic on a 

dataset of size n is formulated as (King 1981): 

DW  = 
∑ (𝑒𝑡−𝑒𝑡−1)2𝑛

𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1
                     (2.40) 

where, 

DW: the Durbin-Watson statistic, 

et: the residual error term in time period t, 

et –1: the residual error term in the previous time period t – 1. 

The DW statistics ranges from 0.0 to 4.0, and it can be shown that: 

DW = 2 (1 - ρ^)                             (2.41) 

where, 

ρ^: the residual temporal autocorrelation coefficient. 

When ρ^ = 0.0, (i.e. no autocorrelation), then DW = 2.0. 

When ρ^ tends to 1.0, then DW = 0.0. 

When ρ^ tends to -1.0, then DW = 4.0. 

The critical values of DW for a given level of significance, sample size and 

number of independent variables can be obtained from published tables that are tabulated 

as pairs of values: DL (lower limit of DW) and DU (upper limit of DW). To evaluate DW 

King (1983) suggests: 
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1) Locate values of DL and DU in Durbin-Watson statistic table.  

2) For positive temporal autocorrelation: 

a) If DW < DL then there is positive autocorrelation. 

b) If DW > DU then there is no positive autocorrelation. 

c) If DL < DW < DU then the test is inconclusive. 

3) For negative temporal autocorrelation: 

a) If DW < (4.0 – DU) then there is no negative autocorrelation. 

b) If DW > (4.0 – DL) then there is negative autocorrelation. 

c) If (4.0 – DU) < DW < (4.0 – DL) then the test is inconclusive. 

A rule of thumb that is sometimes used is to conclude that there is no first order 

temporal autocorrelation if the DW statistic is between 1.5 and 2.5.  A DW statistic below 

1.5 indicates positive first order autocorrelation.  A DW statistic of greater than 2.5 

indicates negative first order autocorrelation (King 1983). Alternatively, a significant p-

value for the DW statistic would suggest to reject the null hypothesis and conclude that 

there is first order autocorrelation in the residuals, and a non-significant p-value would 

suggest accepting the null hypothesis and concluding that there is no evidence of first 

order autocorrelation in the residuals. 

2.9.3.3: The Durbin h Test  

When one or more lagged dependent variables are present in the data, the DW 

statistic will be biased towards 2.0, this means that even if temporal autocorrelation is 

present it may be close to 2.0, and hence it cannot detect it. Durbin suggests a test for 

temporal autocorrelation when there is a lagged dependent variable in the dataset, and it 
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is based on the h statistics. The Durbin h statistics is defined as: 

h = ρ^ √
𝑇

1−𝑇 [ 𝑉𝐴𝑅 (𝛽^)
                            (2.42) 

where, 

T: the number of observations in the dataset, 

ρ^: the temporal autocorrelation coefficient of the residuals, 

VAR (β ^): the variance of the coefficient on the lagged dependent variable. 

Durbin has shown that the h statistics is approximately normally distributed with 

a unit variance, hence the test for first order autocorrelation can be done using the 

standard normal distribution. If Durbin h statistic is equal to or greater than 1.96, it is 

likely that temporal autocorrelation exists (King 1981).  

2.9.3.4: The Breusch-Godfrey Lagrange Multiplier (LM) Test  

The Breusch-Godfrey test is a general test of serial correlation and can be used to 

test for first order temporal autocorrelation or higher order autocorrelation. This test is a 

specific type of Lagrange Multiplier test. The LM test is particularly useful because it is 

not only suitable for testing for temporal autocorrelation of any order, but also suitable 

for models with or without lagged dependent variables (Thomas 1993). The null and 

alternative hypotheses used with this test for a second order autocorrelation are: 

H0: ρ1 = ρ2 = 0.0,   H1:  At least one ρ is not zero     (2.43) 

The LM test statistic is given by:   

LM = (n – i) R2
                             (2.44) 
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where, 

LM: the Lagrange multiplier test statistic, 

n: the number of observations in the dataset, 

i: the order of the autocorrelation, 

R2: the unadjusted R2 statistic (coefficient of determination) of the model. 

The LM statistic has a chi-square distribution with two degrees of freedom, χ2(2) 

(Studenmund 2001). 

2.9.3.5: The Ljung-Box Q (LBQ) Test 

The Ljung-Box Q test (sometimes called the Portmanteau test) is used to test 

whether or not observations taken over time are random and independent for any order of 

temporal autocorrelation. It is based on asymptotic Chi-Square distribution χ 2. In 

particular, for a given i lag, it tests the following hypotheses: 

H0: the autocorrelations up to i lags are all zero,         (2.45) 

         Ha: the autocorrelations of one or more lags differ from zero  (2.46) 

The test statistic provided by Box et al. (1994) is: 

LBQi = n (n+2) ∑
𝑟𝑗

2

𝑛−𝑗

𝑖
𝑗=1                   (2.47) 

where, 

LBQi: the Ljung-Box Q statistic, 

n: the number of observations in the data, 

j: the lag being considered, 
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i: the autocorrelation order, 

r: the residual error term in lag j. 

2.9.3.6: Correlograms 

The correlograms are autocorrelation plots that can show the presence of temporal 

autocorrelation. The autocorrelation would appear in lag 1.0 and progress for n lags then 

disappear. In these plots the residual autocorrelation coefficient (ρ^) is plotted against n 

lags to develop a correlogram. This will give a visual look at a range of autocorrelation 

coefficients at relevant time lags so that significant values may be seen (Chatfield 1996). 

In most software packages, two types of autocorrelation functions are presented: the 

autocorrelation function (ACF), and the partial autocorrelation function (PACF). The 

ACF is the amount of autocorrelation between a variable and a lag that is not explained 

by correlations at all lower-order-lags, and the PACF is the difference between the actual 

correlation at specific lag and the expected correlation due to propagation of correlation 

at the previous lag. If the PACF displays a sharp cutoff while the ACF decays more 

slowly we conclude that the data displays an autoregressive model (AR), and the lag at 

which the PACF cuts off is the indicated number of AR terms. If the ACF of the data 

displays a sharp cutoff and/or the lag-1 autocorrelation is negative then we have to 

consider adding a moving average term (MA) to the model, and the lag at which the ACF 

cuts off is the indicated number of MA terms. In general, the diagnostic patterns of ACF 

and PACF for an AR (1) term (Warner 1998) are: 

ACF: declines in geometric progression from its highest value at lag 1.0. 

PACF: cuts off abruptly after lag 1.0. 
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If the ACF of a specific variable shows a declining geometric progression from 

the highest value at lag 1.0, and the PACF shows an abrupt cut off after lag 1.0., this 

would indicate that this variable has not encountered temporal autocorrelation.  

2.9.4: Remedies for Temporal Autocorrelation   

When temporal autocorrelation is determined to be present in the dataset, then one 

of the first remedial measures should be to investigate the omission of one or more of the 

key explanatory variables, especially variables that are related to time. If such a variable 

does not aid in reducing or eliminating temporal autocorrelation of the error terms, then a 

differencing procedure should be applied to all temporal independent variables in the 

dataset to convert them into their differences values, and rerun the regression model by 

deleting the intercept from the model (Chatfield 1996). If this remedy does not help in 

eliminating temporal autocorrelation, then certain transformations on all variables can be 

performed for the AR (1) term. These transformations aim at performing repeated 

iterative steps to minimize the squared sum of errors in the regression model. Examples 

of such transformations are: Cochrane-Orcutt procedure; and Hildreth-Lu procedure. 

More advanced methods can also be used for big datasets such as: the Fourier series 

analysis; and the spectral analysis (Chatfield 1996; Warner 1998). 

2.10: Spatial Autocorrelation 

Spatial autocorrelation is the correlation of a variable with itself through space. In 

most vehicle accident studies, crash incidents are aggregated to a spatial unit of analysis, 

such as intersections, road segments, zip codes, wards or county levels (Amoros et al. 

2003; Noland and Quddus 2004). However, aggregation of individual crash incidents can 

potentially misrepresent relationships among the original observations that may be 
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important when reasoning about the factors underlying the occurrence of crashes. One 

such concern is the existence of spatial autocorrelation among crash incidents, which if 

present, can adversely influence predictive measures, resulting in higher variances of the 

estimates and consequently, underestimated standard errors (MacNab 2004).  

The spatial autocorrelation phenomenon can be best summarized by the Tobler’s 

first law of Geography that everything is usually related to all else but those which are 

near to each other are more related when compared to those that are further away (Tobler 

1970).  Accordingly, spatial autocorrelation is a measure of the correlation of an 

observation with other observations through space. Spatial autocorrelation can be positive 

or negative among observations.  Positive spatial autocorrelation occurs when 

observations having similar values are closer (i.e. clustered) to one another, and negative 

spatial autocorrelation occurs when observations having dissimilar values occur near (i.e. 

clustered) one another (Anselin 1988; Bailey and Gatrell 1995). Most statistical analyses 

are based on the assumption that the values of observations in each sample are 

independent of one another. Spatial autocorrelation violates this assumption, because 

samples taken from nearby locations are related to each other, and hence, they are 

statistically not independent of one another (Black 1992; Baily and Gatrell 1995). Crash 

data are usually collected with reference to locations measured as points (with x- and y-

coordinates) in space, or to road segments (i.e. mile markers). Two problems may be 

faced when sample data has a locational dimension: (1) the existence of spatial 

autocorrelation between the observations, and (2) the variation of the relationship over 

the space that could be described as spatial heterogeneity (LeSage and Pace 2009) or 

spatial non-stationarity (Fotheringham et al. 2002). Therefore, the consideration of spatial 
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autocorrelations has been gaining attention in crash modeling in recent years, and 

researchers have shown that ignoring this factor may lead to a biased estimation of the 

model parameters (El-Basyouny and Sayed 2006; Mitra and Washington 2007; Aguero-

Valverde and  Jovanis 2008; Mohammadi, et al. 2014).  

Taking the spatial autocorrelation into account in crash modeling can improve 

model parameter estimation, and the overall model fit (Aguero-Valverde and Jovanis 

2008; El-Basyouny and Sayed 2009). Traditional non-spatial modeling approaches to 

crash analysis may not be able to capture the effect of spatial autocorrelation of the 

neighborhood locations on traffic crashes, which could result in a violation of the 

traditional Gauss–Markov assumptions used in traditional regression modelling (Wang 

and Abdel-Aty 2006).  Hence, spatial autocorrelation must be incorporated in the crash 

analysis modeling to properly account for the effect of spatial correlation and any 

unobserved heterogeneity that may exist in the crash data. Black (1992) examins the 

differences between the network autocorrelation and spatial autocorrelation. In his study, 

he demonstrates that the network autocorrelation could influence the values associated 

with a network link given its relationship to another link in the network. To account for 

these relationships, spatial autocorrelation was only modeled between neighboring 

(adjacent) network links. Levine et al. (1995) examines the effect of spatial 

autocorrelation on traffic crashes by geo-coding them to the nearest intersection or ramp, 

and then calculating different spatial statistics such as, mean, standard deviation, and 

standard deviational ellipse. In another study Black and Thomas (1998) explores spatial 

autocorrelation of road segments by using the Moran’s Index. They conclude that there 

was a significant level of positive spatial autocorrelation in the data. When investigating 
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spatial autocorrelation among traffic crashes, Miaou et al. (2003) estimate a series of 

crash frequency models aggregated at the county level for the state of Texas. Wang and 

Abdel-Aty (2006) analyze rear-end crashes at signalized intersections to model the spatial 

correlation between intersections. In their study, three different correlation structures are 

considered: independent correlation, exchangeable correlation, and autoregressive 

correlation, where the correlation decreases as the gap between intersections increases. 

The models proved that high spatial correlations exist between intersections for rear-end 

crashes. Guoa et al. (2010) propose spatial models for intersections, using the distance 

adjacency method for the spatial correlation determination. Further, Wang and  

Kockelman (2013) apply a multivariate spatial modeling method for pedestrian and 

bicyclist collision at the census tracts levels. Chiou et al. (2014) utilize spatial 

multinomial generalized Poisson models to explore the spatial autocorrelation, and find 

that spatial correlation sharply decreases at distances exceeding 7 km, and shorter road 

segments with high crash frequency tend to have high spatial dependency. Aguero-

Valverde (2013) develop a multivariate spatial modeling approach for excess crash 

frequency and severity in cantons (counties) for Costa Rica, and report that the 

multivariate spatial model performed better than univariate spatial models. They also 

report that the effects of spatial smoothing due to multivariate spatial random effects 

were evident in the estimation of no-injury collisions.  

2.10.1: Weight Matrix of Spatial Autocorrelation 

To assess spatial autocorrelation, a distance measure must be specified in order to 

define what is meant by two observations being close together. These distances are 

usually presented in the form of a weights matrix, which defines the relationships 
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between locations at which the observations occur (Cliff and Ord 1981).  If data are 

collected at n locations, then the weight matrix will be n x n with zeroes on the diagonal. 

The weight matrix is often row-standardized, (i.e. all the weights in a row sum to one), 

and can be constructed given a variety of assumptions (Bailey and Gatrell 1995), such as: 

 A constant distance that represents the weight for any two different locations. 

 A fixed weight for all observations within a specified distance.  

 k nearest neighbors that represents a fixed weight, and all others are zero. 

 Weight could be proportional to the inverse distance, or inverse distance 

squared. 

2.10.2: Indices of Spatial Autocorrelation 

There are a number of indices or statistics that attempt to measure spatial 

autocorrelation for count data, such as the Moran’s I, the Geary’s C, and the Getis- Ord G 

statistic (Fischer and Wang 2011). These indices can be computed as Global or Local 

measures depending on the scope of the analysis. Global spatial autocorrelation identifies 

and measures the spatial pattern of the entire study area. Local spatial autocorrelation 

identifies spatial variation across the study area considering the relationship between 

individual features. Anselin (1995) outline a general class of local indicators of spatial 

autocorrelation termed the Local Indicator of Spatial Autocorrelation (LISA) statistic that 

satisfies two conditions, first; the LISA for each point or section in the space gives an 

indication of significant spatial clustering (grouping) of similar or dissimilar values 

around that point or section, and second; the sum of LISAs for all points or sections in a 

given study area is proportional to a corresponding global indicator of spatial 

autocorrelation for that area, which implies that the LISA statistic decomposes global 
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results into their local parts. For example, a significant global index at a given spatial 

point or section may hide large spatial patches of no autocorrelation, and LISA can detect 

this and show us the location of these insignificant patches in space. Conversely, an 

insignificant global result may hide patches of strong autocorrelation, and LISA can 

detect this again. Therefore, the LISA concept in measuring the local spatial 

autocorrelation is very useful by uncovering hidden, local patterns in data that the global 

statistics average over (Anselin 1995). 

2.10.3: Global Indices vs. Local Indices 

There are two types of spatial autocorrelation indices that can be used: Global and 

Local indices depending on the scope of the analysis. Global spatial autocorrelation 

identifies the spatial pattern of the entire study area (i.e. whether the overall area is 

clustered, dispersed, or random). Local spatial autocorrelation identifies spatial variation 

across the study area considering the relationship between individual features, resulting in 

specific areas of clustering (Anselin 1995; Fischer and Wang 2011). Global implies that 

all elements in the weight matrix are included in the calculation of spatial autocorrelation 

providing a single measurement of spatial autocorrelation for an entire data. Local indices 

calculate spatial autocorrelation for individual units within the study area. Indices of 

spatial autocorrelation are based on the general index of matrix association (i.e. the 

Gamma Γ index). The Global Gamma index consists of the sum of the cross products of 

the elements aij and bij in two matrices of similarity, using spatial similarity in one 

matrix (i.e. spatial weight matrix) and value similarity in the other matrix, such that 

(Anselin 1995): 
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Γ = ∑ ∑ 𝑎𝑖𝑗𝑗𝑖 𝑏𝑖𝑗           (2.48) 

Using different value similarity would result in different indices. For example, 

setting aij = xi xj would result in Moran’s I statistic, and setting aij = (xi – xj)
2 would 

result in Geary’ C index (Anselin 1995). The local Gamma index of a location i is 

defined as (Anselin 1995): 

Γi = ∑ 𝑎𝑖𝑗𝑏𝑖𝑗𝑗             (2.49) 

Again using different value similarity would result in different indices. The 

Global Gamma index equals the sum of local Gamma indices within the study area 

(Anselin 1995). 

2.10.4: Moran’s I 

Moran’s I statistic is one of the oldest indices of spatial autocorrelation and can be 

used to test for global and local spatial autocorrelation among continuous data. For any 

continuous variable, xi, a mean x̅, can be calculated and the deviation of any observation 

from that mean can be calculated based on the cross products of the deviations from the 

mean. The statistic then compares the value of the variable at any one location with the 

values at all other locations (Griffith 1987; Goodchild 1987; Anselin 1992). For n 

observations on a variable x at locations i, j, Global Moran’s I can be calculated as 

follows (Anselin 1995): 

I = 
𝒏

𝑺𝟎

∑ ∑ 𝒘𝒊𝒋 (𝒙𝒊− �̅�)(𝒙𝒋 − �̅�)𝒏
𝒋

𝒏
𝒊

∑ (𝒙𝒊−�̅�)𝟐𝒏
𝒊

                       (2.50) 
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where, 

x̅ : the mean of the variable x; 

xi : the value of variable x at location i; 

xj : the value of variable x at location j; 

w i j :  the elements of the weight matrix; 

n : number of observations; 

S0 : is the sum of the elements of the weight matrix:  S0 = ∑ ∑ 𝒘𝒊𝒋 
𝒏
𝒋

𝒏
𝒊  

The local Moran’s I for location i can be calculated as follows: 

Ii    = 
𝑥𝑖−�̅� 

𝑆𝑖
2  ∑ 𝑤𝑖𝑗  (𝑥𝑗 − �̅�𝑛

𝑗=1  )                (2.51) 

𝑆𝑖
2 =  

∑ (𝑥𝑗−�̅�)2𝑛
𝑗=1

𝑛−1
−  �̅�2                        (2.52) 

Values for this index typically, range from -1.0 to +1.0, where a value of -1.0 

indicates negative spatial autocorrelation, and a value of +1.0 indicates positive spatial 

autocorrelation. When nearby points have similar values, their cross product is high. 

Conversely, when nearby points have dissimilar values, their cross-product is low. The 

expectation of Moran’s I statistic is: 

E (I) = (
− 𝟏

𝒏−𝟏
)                      (2.53) 

with a Moran’s I value larger than E (I), indicates positive spatial autocorrelation, 

and a Moran’s I less than E (I), indicates negative spatial autocorrelation. In Moran’s 

initial formulation, the weight variable, wij, was a contiguity matrix. If zone j is adjacent 
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to zone i, the product receives a weight of 1.0. Otherwise, the product receives a weight 

of 0.0. Cliff and Ord (1975) generalized these definitions to include any type of weight, 

and in more current use, wij, is a distance-based weight which is the inverse distance 

between locations i and j (1/dij). The z-score of Moran's I can be computed in Eq. (2.54): 

Zi  = 
𝐼−𝐸 (𝐼)

√𝑉 (𝐼)
                         (2.54) 

where E (I) is the expected value of I, and V (I) is the variance of I, as shown in 

Eq. (2.55): 

V (I) = E (I2) – E2 (I)                    (2.55) 

These z-scores express the difference between the observed and expected value of 

I in standard deviation units. The distribution of the z-scores is assumed to be 

approximately normal with a mean of 0.0 and a variance of 1.0 (Cliff and Ord 1981). A 

statistically significant positive z-score indicates that the distribution of the observations 

are spatially autocorrelated, whereas a negative z-score indicates that the observations 

tend to be more dissimilar. A z-score close to zero indicates that observations are 

randomly and independently distributed in space. By assuming a z-score is from a 

standard normal distribution, their associated p-value can be obtained, and can be used to 

determine the significance of the index at each location (Cliff and Ord 1981). To 

determine if the z- score is statistically significant, it should be compared to the range of 

values for a particular confidence level. For example, at a significance level of 95%, a z-
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score would have to be less than –1.96 or greater than + 1.96 to be statistically 

significant. The null hypothesis H0 is that there is no local spatial autocorrelation among 

the observations. The null hypothesis can be rejected, if the p-value shows that the z-

score is significant, and the next step is to inspect the value of the Moran's I index. If the 

value is greater than 0.0, then observations are spatially autocorrelated, and the pattern is 

clustered, and if the value is less than 0.0, then the pattern is more dispersed (Griffith 

1987; Baily and Gatrell 1995). In case of non-normality, the randomization distribution 

should be used to test the null hypothesis of no local autocorrelation H0  (Anselin 1995) .   

2.10.5: Getis-Ord G statistic 

The Getis-Ord G statistic is a widely used index of spatial autocorrelation but for 

values that fall within a specified distance of each other (Getis and Ord 1992; Ord and 

Getis 1995). The G statistic is calculated with respect to a specified threshold distance 

(defined by the user) rather than to an inverse distance, as with the Moran’s I. The 

General (Global) G statistic computes a single statistic for the entire study area, while the 

Gi statistic is an indicator for local spatial autocorrelation for each data point. The Global 

G statistic can be calculated as follows (Fischer and Wang 2011): 

G = 
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗𝑗≠𝑖𝑖

∑ ∑ 𝑥𝑖𝑥𝑗𝑗≠𝑖𝑖
                 (2.56) 

where, 

xi : the value of variable x at location i; 

xj : the value of variable x at location j; 

w i j :  the elements of the weight matrix. 
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There are two types of local Gi statistics, although almost the two types produce 

identical results (Getis and Ord 1996; Berglund and Karlstrom 1999). The first one, Gi, 

does not include the autocorrelation of a zone with itself, whereas the Gi* includes the 

interaction of a zone with itself (i.e. the Gi statistic does not include the value of Xi itself, 

but only the neighborhood values, but Gi* includes Xi as well as the neighborhood 

values), and both can be computed by the formulae (Fischer and Wang 2011): 

Gi (d) = 
∑ 𝑤𝑖𝑗

𝑛
𝑗≠𝑖  𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗 ≠𝑖

                             (2.57) 

Gi
* (d) = 

∑ 𝑤𝑖𝑗
𝑛
𝑗=1  𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗=1

                          (2.58) 

where d is the neighborhood (threshold) distance, and wij is the weight matrix that 

has only 1.0 or 0.0 values, 1.0 if j is within d distance of i, and 0.0 if its beyond that 

distance. These formulae indicate that the cross-product of the value of X at location i and 

at another location j is weighted by a distance weight, wij which is defined by either a 1.0 

if the two locations are equal to or closer than a threshold distance, d, or a 0.0 otherwise. 

The G statistic can vary between 0.0 and 1.0. The statistical significance of the local 

autocorrelation between each point and its neighbors is assessed by the z-score test and 

the p-value.  
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ArcGIS uses the following formulae to calculate the local Getis-Ord Gi* (ESRI 

2016 a): 

Gi*= 
∑ 𝑤𝑖𝑗𝑥𝑗−�̅� ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑗=1

𝑆  √
𝑛 ∑ 𝑤2

𝑖𝑗−( ∑ 𝑤𝑖𝑗 )
𝑛
𝑗=1

2𝑛
𝑗=1

𝑛−1

                    (2.59) 

�̅� = 
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
                (2.60) 

 

S = √
∑ 𝑥2

𝑗
𝑛
𝑗=1

𝑛
− �̅�2                    (2.61) 

where, 

xi : the value of variable x at location i; 

xj : the value of variable x at location j; 

w i j :  the elements of the weight matrix; 

n : number of observations. 

The expected G value for a threshold distance, d, is defined as (Lee and Wong 

2005): 

E [G (d)] =  
𝑊

𝑛 (𝑛−1)
               (2.62) 

where W is the sum of weights for all pairs of locations (W =∑ ∑ 𝑤𝑖𝑗  
𝑛
𝑗

𝑛
𝑖 ), and n is 

the number of observations.  
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Assuming normal distribution, the variance of G (d) is defined as (Lee and Wong 

2005):  

Var[G (d)] = E (G2) – E2 (G)         (2.63) 

The standard error of G (d) is the square root of the variance of G. Therefore, a 

z-test can be computed by: 

S. E. [G (d)] =√𝑉𝑎𝑟 [ 𝐺 (𝑑)]               (2.64) 

Z [G (d)] =   
𝐺 (𝑑)−𝐸[𝐺 (𝑑)]

𝑆.𝐸.[𝐺 (𝑑)]
                     (2.65) 

where a positive z-value indicates spatial clustering of high values, while a 

negative z-value indicates spatial clustering of low values. Sometimes, the G statistic 

may not follow a normal standard error, and the distribution of the statistic may not be 

normally distributed, such as the case of a skewed variable with some points having very 

high values while the majority of other points having low values. In this case, a 

permutation type simulation should be used (Anselin 1995; Mobley et al. 2008), with a 

randomization distribution to test the null hypothesis of no local autocorrelation (H0). 

This will maintain the distribution of the variable z but will estimate the value of G under 

random assignment of this variable, and the user can take the usual 95% or 99% 

confidence intervals based on the simulation used. 

The type of concentration of incidents (i.e. clustering) and its statistical 

significance is evaluated based on a confidence level and on the output z-scores and the 

correspondent p-values. These will determine whether a data point is classified as having 
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a significant high spatial autocorrelation (denoted by High-High, HH), significant low 

spatial autocorrelation (denoted by Low-Low, LL), a significant dispersed outlier (a high 

data value surrounded by low data values or vice versa, denoted by High-Low, HL or 

Low-High, LH), or insignificant random crash.  

2.11: The Multinomial Logistic Regression (MNL) 

The multinomial logistic regression (MNL) can model the relationships between a 

polytomous (multinomial) dependent variable (with more than two outcomes) and a set of 

independent variables. It is an extension of the binary logistic regression, which analyzes 

dichotomous (binary) dependent variables with only two outcomes. The multinomial 

logit model may be used to handle a dependent variable that is a categorical, unordered 

variable (i.e. cannot be ordered in any logical way). Ordered logistic regression is used in 

cases where the dependent variable is ordered in a certain way. The MNL works by 

choosing one group as the base (reference) category for the other groups. Then MNL 

contrasts all the outcomes of the dependent variable with this common reference 

category, which serves as the contrast point for all analyses, and the effects of the 

analysis are always in reference to the contrast category (Greene 2012). 

The MNL applies the assumption of the independence of irrelevant alternatives 

(IIA), which means that adding or deleting alternative severity outcome categories does 

not affect the prediction among the remaining severity outcomes. In other words, the odd 

ratios produced by the logit function for any pair of severity outcomes are determined 

without reference to the other categories that might be available (McFadden et al. 1976; 

Hausman 1978), and therefore it must be checked in the modeling process.  
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2.11.1: The Advantages of the MNL 

The MNL has many advantages in modeling crash severity, such as (Kleinbaum 

and Klein 2010; Baltagi 2011; Greene 2012): 

 It produces sound estimates as it applies transformation of the multinomial 

dependent variable to a continuous variable ranging from negative infinity 

to positive infinity. It is usually difficult to model a variable which has 

restricted range, such as probability.  This transformation attempts to 

overcome this problem.  It changes probability ranging between 0.0 and 

1.0 to log odds ranging from negative infinity to positive infinity.   

 Among all of the many choices of transformation, the log of odds in MNL 

is one of the easiest to understand and interpret. 

 The results of MNL can be interpreted by both the regression coefficient 

estimates and/or the odd ratios (the exponentiated coefficients) as well. 

 The estimates are asymptotically consistent with the requirements of the 

nonlinear regression process. 

 MNL can be used to improve the fitted model by comparing the full model 

that include all predictors to a chosen restricted models by excluding the 

non-significant predictors, then picks up the best fit. 
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CHAPTER 3: METHODS 

This dissertation describes a framework for modeling the severity of vehicular 

crashes given the location (i.e. the latitude and longitude) and other characteristics of 

crash incidence along roadways that can be obtained from crash data. For this type of 

analysis, one must first test for temporal autocorrelation among the independent variables 

that are related to the time, and correct for any significant temporal autocorrelation that 

might exist before using the data. Next, the spatial autocorrelation of the vehicular 

crashes must be tested to identify the clustering patterns of the incidents. If the vehicular 

crashes are found to be significantly clustered due to spatial autocorrelation, then an 

appropriate spatial autocorrelation index must be incorporated in the modeling process as 

a risk factor.  Next, the available sight distance of the roadway must be determined 

according to AASHTO (2011) criteria, and roadway segments with sight distances that 

may potentially not conform to the AASHTO (2011) standards can be incorporated in the 

modeling process as risk factors. Lastly, one must apply an appropriate statistical process 

that can identify the risk factors contributing to different crash severity categories.  

3.1: Evaluation of the Temporal Autocorrelation (TA) 

Temporal autocorrelation (also called serial correlation) refers to the relationship 

between successive values (i.e. lags) of the same variable. Although it is a major concern 

in time series models, however, it is very important to be checked in crash modeling as 

well (Washington et al. 2010; Lord and Mannering 2010; Savolainen et al. 2011). The 

results of crash modeling can be improved when several years of crash data are utilized in 

the analysis, such as a period of three years instead of one year (Mohammadi et al. 2014). 
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However, this means that the same roadway will generate multiple observations over 

time, which could be correlated due to some temporal (time) component and could 

adversely affect the precision of parameter estimates (Washington et al. 2010; Lord and 

Mannering 2010; Savolainen et al. 2011). There are several methods in the literature that 

can be used to detect the existence of the temporal autocorrelation in the dataset, such as: 

1) the residuals scatter plots; 2) the Durbin-Watson (DW) test; 3) the Durbin h test; 4) the 

Breusch-Godfrey (LM) test; 5) the Ljung-Box Q (LBQ) test; and 6) correlograms. The 

residuals scatter plots and correlograms are not formal tests, and they would only suggest 

whether temporal autocorrelation may exist within crash data (Hilbe 2014). The Durbin h 

test can only be used when there is a lagged dependent variable in the dataset (King 1981; 

Hilbe 2014).  This dissertation uses the Durbin-Watson (DW), Breusch-Godfrey (LM), 

and the LBQ tests to detect the temporal autocorrelation among the temporal independent 

variables in the crash data (i.e. hour, weekday, month). Although the applications of these 

tests can be found in time series models, they have not been addressed in modeling crash 

severity (Lord and Mannering 2010; Savolainen et al. 2011). As such, this dissertation 

investigates the applicability of these tests. These tests can be applied at different levels 

of temporal aggregation (i.e. over one year, over two years, three years, etc.) to help 

identify any hidden effects of the temporal autocorrelation that might exist within a 

timeframe. In this dissertation, the JMP12 software package is used to compute the DW 

statistics, the associated residual temporal autocorrelation coefficients, and their 

significance at the 95% confidence level (i.e. p-values). JMP requires that the input 

format of the crash data be in either excel spreadsheet (i.e. *.xlsx) or in text (i.e. 

delimited or *.csv) and then the output is produced as excel spreadsheet or delimited text. 
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The Eviews 9 software is used to compute the LM statistics, and their significance at the 

95% confidence level (i.e. p-values). The software requires that the input format of the 

crash data be in either excel spreadsheet (i.e. *.xlsx) or in text (i.e. delimited or *.csv) and 

then the output is produced as excel spreadsheet or delimited text. The Stata 14 software 

is used to compute the Box-Ljung Q statistic (LBQ) at each lag separately with the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) at each 

lag as well, and their significance at the 95% confidence level (i.e. p-values). The 

software requires that the input format of the crash data be in either excel spreadsheet 

(i.e. *.xlsx) or in text (i.e. delimited or *.csv) and then the output is produced as excel 

spreadsheet or delimited text.   

 The DW test is a measure of the first order autocorrelation and it cannot be used 

to test for higher order temporal autocorrelation. The DW test statistic on a dataset of size 

n can be computed as (King 1981): 

DW  = 
∑ (𝑒𝑡−𝑒𝑡−1)2𝑛

𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1
                     (3.1) 

where, 

DW: the Durbin-Watson statistic, 

et: the residual error term in time period t, 

et –1: the residual error term in the previous time period t – 1. 

The Breusch-Godfrey test is a general test of temporal autocorrelation and can be 

used to test for first order temporal autocorrelation or higher order autocorrelation, and is 

based on asymptotic Chi-Square distribution χ 2. This test is a specific type of Lagrange 
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Multiplier (LM) test. The LM test statistic can be computed as (Thomas 1993; 

Studenmund 2001):   

LM = (n – i) R2
                             (3.2) 

where, 

LM: the Lagrange multiplier test statistic, 

n: the number of observations in the dataset, 

i: the order of the autocorrelation, 

R2: the unadjusted R2 statistic (coefficient of determination) of the model. 

The Ljung-Box Q (LBQ) test (sometimes called the Portmanteau test) is used to 

test for any order of temporal autocorrelation, and is based on asymptotic Chi-Square 

distribution χ 2. The test statistic provided by Box et al. (1994) is: 

LBQ = n (n+2) ∑
𝑟𝑗

2

𝑛−𝑗

𝑖
𝑗=1                   (3.3) 

where, 

LBQ: the Ljung-Box Q statistic, 

n: the number of observations in the data, 

j: the lag being considered, 

i: the autocorrelation order, 

r: the residual error term in lag j. 

The minimum recommended number of lags (m) that should be considered for the 

LM and LBQ tests is roughly taken as the natural logarithm of the number of observations 
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(n) within the dataset (i.e. m = ln (n)) (Tsay 2010), and larger values are recommended to 

detect the existence of temporal autocorrelation. 

3.2: Removal of Temporal Autocorrelation 

If the temporal autocorrelation is found to be significant in crash data, then it must 

be removed before using the data in the modeling process (Washington et al. 2010; Lord 

and Mannering 2010; Savolainen et al. 2011). In order to remove any significant 

temporal autocorrelation that may be existed in a dataset, one of the first remedial 

measures should be to investigate the omission of one or more of the explanatory 

variables, especially variables that are related to time. In this research, since the three 

temporal variables in the datasets (month, weekday, hour) have potential influence on the 

dependent variable (i.e. crash severity), therefore they are unlikely to be removed from 

the analysis. Hence, the next step is to apply a differencing procedure to all time 

independent variables in the dataset to convert them into their differences values, and 

rerun an ordinary least squared regression model from the origin by deleting the intercept 

from the model (Chatfield 1996). Differencing can be applied by simply subtracting the 

previous observation from the current observation, as follows: 

D (Yt) = Yt – Yt-1                (3.4) 

where, 

D (Y) : the difference of variable Y at lag t, 

Yt : the value of Y at lag t, 

Y t-1 : the value of Y at lag t-1. 

The rho (i.e. the residual autocorrelation coefficient) is assumed to be (1.0) in the 
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differencing procedure, which could overestimate the true rho value (Pindyck and 

Rubinfeld 1981). 

When the differencing procedure cannot eliminate the temporal autocorrelation in 

a dataset, then the Cochrane-Orcutt procedure should be applied for the Autoregressive 

AR (1) term of this dataset (Wooldridge 2013). The procedure uses the ordinary least 

square residuals to obtain the value of rho which minimizes the sum of squared residuals. 

Rho is then used to transform the observations of the variables. The process continues 

until convergence is reached (Cochrane and Orcutt 1949; Wooldridge 2013). Considering 

the ordinary least squared regression model: 

Yt = α + Xt β + εt          (3.5) 

where, 

Yt : the dependent variable at time (lag) t, 

α: the intercept, 

β : the vector of regression coefficients, 

Xt : the vector of explanatory variables at time (lag) t, 

εt : the error term of the model at time (lag) t 

If the Durbin-Watson (DW) test revealed that the temporal autocorrelation exists 

among the model error terms, then the residuals must be modeled for the first order 

autoregressive term AR (1) such that: 

εt = ρ ε t-1 + e t          (3.6) 
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where, 

ρ : the temporal  autocorrelation coefficient (rho) between pairs of observations, 0 < ρ <1, 

et : the error term of the residuals at time (lag) t. 

The Cochrane-Orcutt procedure is obtained by taking a quasi-differencing or 

generalized differencing, such that the sum of squared residuals is minimized (Cochrane 

and Orcutt 1949; Wooldridge 2013): 

Yt – ρ Y t-1 = α (1 – ρ) + β (X t – ρ X t-1) + e t      (3.7) 

The Cochrane-Orcutt iterative procedure starts by obtaining parameter estimates 

by the ordinary least square regression (OLS). Applying equation (3.6), the OLS 

residuals are then used to obtain an estimate of rho from the OLS regression. This 

estimate of rho is then used to produce transformed observations, and parameter 

estimates are obtained again by applying OLS to the transformed model. A new estimate 

of rho is computed and another round of parameter estimates is obtained. The iterations 

stop when successive parameter estimates differ by less than 0.001 (Wooldridge 2013). 

3.3: Evaluation of Spatial Autocorrelation 

In many vehicle crash datasets, geographic relationships among crashes can exists 

given that movement is confined to roadways which are traversed by many users. This 

phenomena is termed spatial autocorrelation and if not appropriately accounted for, can 

lead to incorrect parameter estimates (Lord and Persaud 2000; Wood 2002; Quddus 2004; 

MacNab 2004; El-Basyouny and Sayed 2009; Washington et al. 2010; Lord and 

Mannering 2010; Savolainen et al. 2011). This dissertation examines two spatial 
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autocorrelation indices: 1) Moran’s I; and 2) Getis-Ord Gi*statistic to differentiate 

between spatially clustered, dispersed, or random crash events. Some of these spatial 

autocorrelation statistics have been applied in the context of traffic safety data. For 

example, Manepalli et al. (2011) applied the Gi* to determine the road high crash areas in 

Arkansas, but without using the results in crash modeling. Truong and Somenahalli 

(2011) applied Moran’s I and Gi* to identify the unsafe transit bus stops in south 

Australia.  However, such autocorrelation statistics have not been previously investigated 

for their utility in crash severity modeling.  As such, this dissertation introduces the 

application of these statistics in the crash modeling process as potential risk factors. In 

addition, this dissertation introduces a new hybrid method to evaluate spatial 

autocorrelation of crashes by combining both Moran’s I and Gi* statistic to examine the 

spatial clustering pattern of crashes. 

 For n observations on a variable x at locations i, j, Global Moran’s I can be 

calculated as follows (Anselin 1995): 

I = 
𝒏

𝑺𝟎

∑ ∑ 𝒘𝒊𝒋 (𝒙𝒊− �̅�)(𝒙𝒋 − �̅�)𝒏
𝒋

𝒏
𝒊

∑ (𝒙𝒊−�̅�)𝟐𝒏
𝒊

                       (3.8) 

where, 

x̅ : the mean of the variable x; 

xi : the value of variable x at location i; 

xj : the value of variable x at location j; 

w i j :  the elements of the weight matrix; 
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n : number of observations; 

S0 : is the sum of the elements of the weight matrix:  S0 = ∑ ∑ 𝒘𝒊𝒋 
𝒏
𝒋

𝒏
𝒊  

The local Moran’s I for location i can be calculated as follows: 

Ii    = 
𝑥𝑖−�̅� 

𝑆𝑖
2  ∑ 𝑤𝑖𝑗  (𝑥𝑗 − �̅�𝑛

𝑗=1  )                (3.9) 

𝑆𝑖
2 =  

∑ (𝑥𝑗−�̅�)2𝑛
𝑗=1

𝑛−1
−  �̅�2                        (3.10) 

The weight matrix, wij, is a contiguity matrix. If zone j is adjacent to zone i, wij= 

1.0. Otherwise, wij= 0.0. Cliff and Ord (1975) generalized these definitions to include 

any type of weight, and in more current use, wij, is a distance-based weight which is the 

inverse distance between locations i and j (1/dij). Values of this index typically, range 

from -1.0 to +1.0, where a value of -1.0 indicates negative spatial autocorrelation, and a 

value of +1.0 indicates positive spatial autocorrelation. When nearby points have similar 

values, their cross product is high. Conversely, when nearby points have dissimilar 

values, their cross-product is low.  

The General (Global) G statistic computes a single statistic for the entire study 

area, while the Gi statistic is an indicator for local spatial autocorrelation for each data 

point. The Global G statistic can be calculated as follows (Fischer and Wang 2011): 

G = 
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗𝑗≠𝑖𝑖

∑ ∑ 𝑥𝑖𝑥𝑗𝑗≠𝑖𝑖
                 (3.11) 
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where, 

xi : the value of variable x at location i; 

xj : the value of variable x at location j; 

w i j :  the elements of the weight matrix; 

There are two types of local Gi statistics, although almost the two types produce 

identical results (Getis and Ord 1996; Berglund and Karlstrom 1999). The first one, Gi, 

does not include the autocorrelation of a zone with itself, whereas the Gi* includes the 

interaction of a zone with itself (i.e. the Gi statistic does not include the value of Xi itself, 

but only the neighborhood values, but Gi* includes Xi as well as the neighborhood 

values), and both can be computed by the formulae (Fischer and Wang 2011): 

Gi (d) = 
∑ 𝑤𝑖𝑗

𝑛
𝑗≠𝑖  𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗 ≠𝑖

                             (3.12) 

Gi
* (d) = 

∑ 𝑤𝑖𝑗
𝑛
𝑗=1  𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗=1

                          (3.13) 

where d is the neighborhood (threshold) distance, and wij is the weight matrix that 

has only 1.0 or 0.0 values, 1.0 if j is within d distance of i, and 0.0 if its beyond that 

distance. These formulae indicate that the cross-product of the value of X at location i and 

at another location j is weighted by a distance weight, wij which is defined by either a 1.0 

if the two locations are equal to or closer than a threshold distance, d, or a 0.0 otherwise. 

The G statistic can vary between 0.0 and 1.0. The significance of the local autocorrelation 

between each point and its neighbors is assessed by the z-score and the p-value.                     
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Both Moran’s I and the Getis-Ord Gi* statistic might be adapted to use values of 

xi and xj that represent any variable in the model, such as crash severity, number of 

vehicles involved, speeding, and accident type. In this dissertation, both are adapted to 

use values of xi and xj that represent the crash severity. A Gi* value is computed for each 

crash location and subsequently used as a potential risk factor in the crash severity model 

with three possible indicators: high significant spatial autocorrelation values; low 

significant spatial autocorrelation values; or otherwise considered as insignificant random 

crashes. 

A GIS can be used to compute the Moran’s I, and Gi* statistics for a set of crashes 

using the following process:  

 Spatially join the attributes of crash incidents to road segments based on their 

location relationship (i.e. latitude/longitude) using functionalities of a GIS that try 

to parse roads up into consistent analysis units and matching the two features 

according to their relative spatial locations; 

 Build a network of roads from the crash attributed road segments; 

 Generate spatial weights matrix for the network arcs; 

 Compute the Global Moran’s I available in the ArcMap 10.2.2 Spatial Statistics 

toolkit; 

 Compute the Global (General) Gi statistic available in the ArcMap 10.2.2 Spatial 

Statistics toolkit; 

 Compute Anselin local Moran’s I available in the ArcMap 10.2.2 Spatial 

Statistics toolkit; 
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 Compute the local Getis-Ord local Gi* statistic available in the ArcMap 10.2.2 

Spatial Statistics toolkit; 

Statistically significant high spatial autocorrelation locations will have a high z-

value and be surrounded by other crashes with high z-values as well (referred to as high-

high (HH)). Statistically significant low spatial autocorrelation locations (referred to as 

low-low (LL)) will be found in cases where a crash point will have a low z-value and be 

surrounded by other crashes with low z-values as well. If the z-value of a particular crash 

location is higher than the mean z-value of all crashes, then it would be considered high. 

If the z-value of a particular crash point is lower than the mean z-value of all crashes, 

then it would be considered low. The resultant z-scores and p-values indicate whether 

crashes with either high or low z-values are clustered. A high z-score and small p-value 

for a crash point indicates a spatial clustering of high values (i.e. HH). A low negative z-

score and small p-value indicates a spatial clustering of low values (i.e. LL). The higher 

(or lower) the z-score, the more intense the clustering. A z-score near zero indicates no 

apparent spatial clustering. Both the Anselin local Moran’s I and the local Gi*statistic can 

be computed by the ArcMap 10.2.2 Spatial Statistics toolkit (ESRI 2016).  

Since the Anselin Moran’s I and the Gi* can identify relatively different 

clustering patterns of crashes, therefore this dissertation recommends using a 

combination (hybrid) of these spatial autocorrelation indices to determine the clustering 

patterns. Using a combination of indices can make improvements on the clustering 

patterns. To couple the Moran’s, and the Gi* autocorrelation indices into a new hybrid 
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method, any combination maybe used by the user depending on his/her own 

interpretation of the results that produces the optimal measures. For instance, a 

combination of 30% Moran’s I, and 70% Gi* in representing the final spatial 

autocorrelation measure of crashes is used in this dissertation to examine a new spatial 

clustering pattern of crashes.  

3.4: Evaluation of Sight Distance 

In this dissertation, a GIS-based viewshed analysis is developed to assess existing 

stopping and decision sight distances on multilane highways. This method can be used to 

identify locations along roadways that likely do not conform to the AASHTO (2011) 

criteria regarding stopping sight distance and decision sight distance.  Moreover, this 

approach can also be used to compute actual sight distances at or near crash incidents 

which could then be used as a potential risk factor in crash prediction. This method 

provides a new technique for estimating the available stopping and decision sight 

distance and also presents a new method for estimating the passing sight distance on two-

lane highways, and locating the passing zones and no-passing zones along two-lane 

highways. 

3.4.1: Viewshed Analysis 

Viewshed analysis in a GIS environment typically evaluates raster-based 

elevation data, such as digital elevation model (DEM), to determine which cells are 

visible from a particular location. Each raster cell is denoted by its column and row 

number, relative to a reference X and Y coordinate. Each raster cell is associated with a 

single attribute, such as elevation in the case of a DEM.  The width of the raster cells 

denotes the spatial resolution of the dataset. To create a viewshed for determining the 
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visibility between an observer location and a target point on the Earth’s surface, all cells 

along the line-of-sight (LOS) from an observer’s location and a target’s location must be 

identified. Once the raster cells along the line-of-sight have been determined, the 

elevation value of each cell is loaded into an array, which holds the elevation values of 

the terrain profile between the two points. However, the LOS does not necessarily cross 

each cell at its center, with the exception of the beginning and end cells. Therefore, the 

terrain profile may be further refined by interpolating the elevation value at the 

approximate location at which the LOS enters and leaves each cell. After the cells 

underneath the LOS are selected and the elevation values are determined in a chosen 

geographic coordinate system, these values can then be used to create the terrain profile 

needed for determining visibility of the target from the observer, and a viewshed is 

created (De Floriani and Magillo 1994; Fisher 1996; Wang et al., 2000; Kim et al. 2004).  

3.4.2: Generating Viewsheds  

In order to conduct sight distance analysis of locations along highways, DEMs are 

needed as well as a representation of the road network to provide information on the 

trajectories that vehicle must follow when traveling along a highway. DEMs are often 

publicly available online in a variety of formats and spatial resolutions for most areas 

within the U.S. In this dissertation, the following steps are used to generate viewsheds: 

 Derive a set of observer points along a roadway from which sight distance will be 

evaluated.   

 Densification of road segments: for each segment of the roadway, 

vertices are added such that the distance between each vertex and the 

next one is not more than the AASHTO recommended sight distance, 
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as shown in Figure 3.1. For instance, given a road segment that is 1100 

m long, with a speed of 70 mph (110 km/h) and an AASHTO sight 

distance of 220 m, 5 vertices (i.e. 1100/220) would be added to the line 

so that there is at least one vertex every 220m. 

 Convert segment vertices to points: For each road segment, all vertices 

are extracted and rendered as point features. The resulting points are 

then used as possible locations from which drivers may view the 

landscape while driving.  

 Determine the roadway analysis region: The region around each road to be 

analyzed should be sized according to how it is assumed features off the roadway 

are expected to impact visibility.  For instance, it could be assumed that features 

more than 200m from a road segment likely wouldn’t have a large impact on sight 

distance, etc.    

 To obtain this analysis region, the road segments can be transformed 

into polygons through a buffer transformation using a GIS. For 

example, the segments could be buffered by 200.0 m so as to define 

the areas of interest.   

 Extract portions of DEMs within the analysis region: Given that, DEMs can be 

large and present a computational burden, only those portions of the DEMs 

corresponding with the analysis region are retained for analysis. This can be done 

by clipping the DEMs by the road buffer. 

 Combine the portions of the DEMs within the analysis region:  In cases where 

more than one DEM is needed to evaluate roadway sight distance, all of the 
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portions of the DEMs falling within the analysis region can be combined together 

into a single seamless DEM termed a Mosaic that can minimize the abrupt 

changes along the boundaries of the overlapping rasters. 

 

Figure 3.1: Observer points in viewshed analysis 

 Creating viewsheds: Using the mosaicked DEMs, the observer points, and 

assuming the heights of the driver and an object on the road, viewsheds can be 

generated. In particular, the following parameters must be specified before 

creating the viewsheds, as shown in Figure 3.2 and Figure 3.3. 
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Figure 3.2: Viewshed parameters 

  

 

Figure 3.3: Viewshed horizontal and vertical scans 

1. Observer Height = represents the height of the driver’s eye above the 

road surface for each observer point. AASHTO (2011) recommends 

1.08 meter (3.5 ft) for both stopping and decision sight distances. 

AASHTO (2011) also recommends 1.08 meter as an observer height 

for the passing sight distance. 
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2. Object Height = represents the height of a visible object above the road 

surface. AASHTO (2011) recommends 0.6 meter (2.0 ft) for both 

stopping and decision sight distances. AASHTO (2011) recommends 

1.08 meter as an object height for the passing sight distance. 

3. Start Azimuth = represents the start horizontal angle of the scan range 

for the observer. A 0.0 degree is used in this dissertation for stopping, 

decision, and passing sight distances. 

4. End Azimuth = represents the end horizontal angle of the scan range 

for the observer. A 180.0 degree is used in this dissertation for 

stopping, decision, and passing sight distances. 

5. Upper Vertical = represents the upper vertical angle of the scan for the 

observer. A 90.0 degree is used in this dissertation for stopping, 

decision, and passing sight distances. 

6. Lower Vertical = represents the lower vertical angle of the scan for the 

observer. A negative 90.0 degree is used in this dissertation for 

stopping, decision, and passing sight distances. 

7. Nearest Distance = represents the closest location that can be viewed 

by the observer. A 0.0 meter is used in this dissertation for stopping, 

decision, and passing sight distances. 

8. Furthest Distance = represents the farthest location that can be viewed 

by the observer. This value could be infinity or any reasonable number 

that the driver’s eye can see at farthest possible point. A value of 1000 

meter is used for stopping, decision, and passing sight distances. 
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 Classifying the viewshed created in the previous step into segments that conform 

to AASHTO (2011) sight distance (denoted by AASHTO SD) and segments that 

may have visibility issues relative to AASHTO (2011) standards (denoted by 

NOT AASHTO SD). The conforming segments are those with available sight 

distances that are equal or greater than the AASHTO (2011) sight distance 

criteria, while the segments that may have visibility issues are those with 

available sight distance that are less than the AASHTO (2011) sight distance, as 

shown in Figure 3.4. The decision sight distance at segments with potential 

visibility issues was used as potential risk factor in the crash severity modeling.

 

 

           Figure 3.4: Classification of road segments  

3.4.3: Incorporating Passing Sight Distance in Methodology 

To incorporate the passing sight distance in the methodology, the viewsheds 

created in the previous steps should be classified into segments that conform to AASHTO 

(2011) passing sight distance (Passing Zones PZ) and segments that may not conform to 
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AASHTO passing sight distance (No-Passing Zones NPZ). PZs are those with available 

sight distances that are equal or greater than the AASHTO (2011) passing sight distance 

criteria, and the NPZs are those with available passing sight distance that are less than the 

AASHTO (2011) passing sight distance, as shown in Figure 3.5.   

 

Figure 3.5: Passing and no-passing zones 

3.5: Evaluation of Multinomial Logistic Regression (MNL) 

Since the dependent variable in crash severity modeling (i.e. crash severity) 

usually has two or more outcome categories (i.e. fatal, injury, property-damage-only), 

therefore, logit and probit models are often used to model the severity of crash data. 

Discriminant analysis could also be used to model crash severity, but it assumes very 

restricted rules, so logit and probit are preferred due to their modeling flexibility 

(Washington et al. 2010; Greene 2012). Binary models consider two response outcomes 
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(i.e. fatal vs. non-fatal or injury vs. property-damage-only), and multinomial models 

consider three or more response outcomes. There are many types of the multinomial 

models that can be used in modeling crash severity, such as, the multinomial logistic 

regression (MNL), the nested logistic regression, the mixed logistic regression, and the 

multinomial probit models, however, the MNL is the most popular and convenient model 

that can be used in the analysis of crash severity (Washington et al. 2010; Greene 2012). 

The dependent variable (i.e. crash severity) in this dissertation has four outcome 

categories (i.e. fatal, disabling injury, minor injury, property-damage-only), and is 

nominal (i.e. unordered), therefore it is modeled by the multinomial logistic regression 

(MNL). The MNL works by choosing one outcome category as the base (reference) 

category for the other categories. Then MNL contrasts all the outcomes of the dependent 

variable with this common reference category, which serves as the contrast point for all 

analyses, and the results of the analysis are always in reference to the contrast category 

(Greene 2012). In this dissertation, the property damage is considered as the reference 

group (i.e. base category), because it is the most frequent outcome of crash severity, and 

the other outcome levels (i.e. minor injury, disabling injury, and fatal) are estimated 

relative to the property damage. 

There are very few applications of the MNL in crash modeling. For example, 

Abdel-Aty (2003) apply the ordered probit model and the ordered MNL to predict crash 

severity on roadway sections, signalized intersections and toll plazas by using the Florida 

crash database. Bham et al. (2012) apply a multinomial logistic regression to model the 

severity injury of different vehicle collision patterns in urban highways in Arkansas, and 

recommended the use of the MNL over other models. Despite these few applications of 
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the MNL, this dissertation seeks to introduce a variety of new procedures in presenting 

the results of the MNL applications that have not been reported in other crash severity 

research. First, the use of odd ratios as regression estimates is explored to interpret the 

results of prediction instead of regression coefficients. Second, a greater focus is place on 

the assumption of the independence of irrelevant alternatives (IIA), which is very crucial 

in the MNL modeling, using the Hausman specification test. Third, the generalized 

Hosmer-Lemeshow test is used as an important goodness of fit measure to assess whether 

or not the observed incidents match the predicted incidents. Fourth, the concept of the 

classification table is evaluated as a measure of goodness of fit to determine the percent 

of corrected prediction cases. Next, tests for the multicollinearity among the independent 

variables as precondition assumption are conducted. The pseudo R square measure is 

used as a potential goodness of fit instead of the classical measures, such as the Deviance, 

the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC). 

Lastly, the marginal effects of all independent variables upon the dependent variable are 

presented. The following sections illustrate the assumptions of the MNL, the concept of 

logit functions and odd ratios, several methodological procedures that should be used in 

testing the assumptions of the MNL, and the MNL goodness of fit tests. 

3.5.1: The Assumptions of MNL 

The multinomial logistic regression uses the Maximum Likelihood Estimation 

(MLE) rather than the Ordinary Least Squared (OLS) estimation, therefore it avoids 

many of the typical assumptions tested in ordinary statistical analysis, such as the 

following (Greene 2012): 
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 Does not assume normal distribution of variables (both dependent variables DVs 

and independent variables IVs). 

 Does not assume linearity between DV and IVs. 

 Does not assume homoscedasticity (homogeneity of variances). 

 Does not assume normal distribution of errors. 

However, MNL does apply the following assumptions when used in the analysis: 

 The dependent variable has to be categorical (i.e. it must be possible to 

divide the responses into different categories) but without intrinsic order (unordered). 

 The independent variable may either be numerical (i.e. continuous) or categorical 

(i.e. discrete). 

 Categories of DV must represent discrete units that are mutually exclusive and 

exhaustive. 

 Categories of the DV must have a contrast reference/base category, otherwise, 

one must run all pair-wise contrasts between them. 

 Large sample size must be used (not less than 30 observations). 

  Multicollinearity must be checked, and is assumed to be relatively low, as it 

becomes difficult to differentiate between the impact of several variables if they are 

highly correlated. 

 The assumption of independence of irrelevant alternatives (IIA) must hold. This 

assumption states that the odds of one class versus another do not depend on the 

presence or absence of other "irrelevant" alternatives. 
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3.5.2: The Logit Function and Odd Ratios of MNL 

The MNL tries to find the best fitted model to describe the relationship between 

the polytomous dependent variable with more than two categories and a set of 

independent variables. The logistic regression model is a non-linear transformation of the 

linear regression model, as it consists of an S-shaped distribution function, and it’s very 

easy to work with in most applications (Judge et al. 1985). The logit distribution 

constrains the estimated probabilities that lie between 0.0 and 1.0, as shown in Figure 3.6. 

The logistic regression function is bounded by 0.0 and 1.0, whereas the linear regression 

function may predict values above 1.0 and below 0.0. 

  

Figure 3.6: Comparison of linear and logistic regression 

The logistic (logit) function can be expressed as: 

Logit (p) = b0 + b1 X1 + b2 X2 + …+ bk Xk          (3.14) 

Where, 

p: the probability of presence of an outcome of interest, 
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Xk: the vector of k independent variables, 

b0: the regression coefficient on the constant term (intercept), 

bk: the vector of regression coefficients on the independent variables Xk, 

The odd ratio is the probability of the event divided by the probability of the 

nonevent, and is defined as follows (Judge et al. 1985; Greene 2012): 

odd ratios = p / (1 – p)                (3.15) 

When p = 0, then odd (p) = 0, when p = 0.5, then odd (p) = 1.0, and when p = 

1.0, then odd (p) = ∞. 

The logit transformation is defined as the logged odds: 

Logit (p) = ln [p / (1 – p)]                 (3.16) 

The transformation from odds to log of odds is the log transformation, and this is 

a monotonic transformation. That is, the greater the odds, the greater the log of odds and 

vice versa. 

Logit (p) can be back-transformed to p by the following formula: 

p = 
1

1+𝑒− 𝑙𝑜𝑔𝑖𝑡 (𝑝)           (3.17) 

The transformation from probability to odds is a monotonic transformation as 

well, meaning the odds increase as the probability increases or vice versa.  Probability 

ranges from 0.0 and 1.0.  Odds range from 0.0 and positive infinity (Judge et al. 1985; 

Baltagi 2011). 
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3.5.3: Maximum Likelihood Estimation (MLE) 

Multinomial logistic regression uses the maximum likelihood estimation (MLE) 

to produce the regression parameters. Assuming that the random variables X1, X2, · · ·, 

Xn form a random sample from a distribution f (x |θ); if X is continuous random 

variable, f (x| θ) is probability density function (pdf), if X is discrete random variable, f 

(x| θ) is point mass function (pmf). The distribution depends on a parameter θ, where θ 

could be a real unknown parameter or a vector of parameters. For every observed random 

sample x1, · · ·, xn, we define (Long 1996):  

f (x1, · · ·, xn| θ) = f (x1| θ) · · · f (xn| θ)       (3.18) 

If f (x| θ) is pdf, f (x1, · · ·, xn| θ) is the joint density function; if f (x| θ) is 

pmf, f (x1, · · ·, xn| θ) is the joint probability. The function f (x1, · · ·, xn| θ) is the 

likelihood function, which depends on the unknown parameter θ, and it is denoted as 

L(θ). In order to get the maximum likelihood function, a value of θ for which the 

likelihood function L(θ) is a maximum is used as an estimate of θ. Maximizing L(θ) 

with a product of n terms is equivalent to maximizing log L(θ) because log is a 

monotonic increasing function. log L(θ) is a log likelihood function, and is denoted as 

LL(θ), as follows (Long 1996):  

LL (θ) = log (θ) = log ∏ 𝑓(𝑋𝑖| 𝜃)𝑛
𝑖=1  = ∑ 𝑓(𝑋𝑖| 𝜃)𝑛

𝑖=1     (3.19) 
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3.5.4: The Effects of Independent Variables 

The effect of any independent variable on the outcome can be tested using the 

likelihood ratio (LR) statistic test. If the dependent variable has M categories, then there 

are M – 1 non redundant coefficients (βn) associated with each independent variable xn. 

The null hypothesis that xn does not affect the dependent variable can be written as: 

H0: βn, 1| Base = … = βn, M | Base = 0          (3.20) 

Where Base is the base category used in the model. The hypothesis can be tested 

with the LR test. First, the LR estimates the full model that contains all of the independent 

variables with the resulting LR statistic LRF. Second, the LR estimates the restricted 

model formed by excluding the independent variable xn with the resulting LR statistic 

LRR. Finally, the LR estimates the difference between LRF and LRR which is distributed 

as chi-square with n degrees of freedom (the number of independent variables). The LR 

statistic is computed in terms of log likelihood (LL) as follows (Long 1996; Baltagi 

2011): 

LR = [-2 LL (of full model)] - [-2 LL (of restricted model)]   (3.21) 

LR = LRF – LRR                       (3.22) 

Alternatively, the null model is given by (-2 log (L0)) where L0 is the likelihood of 

obtaining the observations if the independent variables had no effect on the outcome (i.e. 

model with intercept alone). The full model is given by (-2 log (L)) where L is the 

likelihood of obtaining the observations with all independent variables incorporated in 

the model. The difference of these two yields a Chi-Squared statistic which is a measure 
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of how well the independent variables affect the outcome or dependent variable (Greene 

2012). If the LR statistic for the overall model is significant, then there is evidence that 

the independent variables have contributed to the prediction of the outcome. 

3.5.5: The Independence of Irrelevant Alternatives (IIA) 

The MNL assumes that the odd ratios for any pair of outcomes (i.e. any pair of the 

dependent variable categories) are determined without reference to the other categories 

that might be available (McFadden et al. 1976; Hausman 1978). This assumption is called 

the independence of irrelevant alternatives (IIA), which is very crucial in the MNL 

modeling. If the IIA holds, then the MNL model can be used, if the IIA does not hold, 

then the MNL cannot be used and alternative models should be utilized such as, the 

nested MNL. The IIA can be tested by the Hausman specification test, proposed by 

Hausman and McFadden (1984), which proceeds by estimating the error coefficients of 

the full model with all categories of the dependent variable included, then estimating the 

error coefficients of a restricted model by eliminating one or more outcome categories. 

The null hypothesis of the test is that the IIA does not exist and estimators of the full and 

restricted models are consistent, and under the alternative hypothesis the IIA does exist 

and only the estimators of the restricted model are consistent. The test statistic HIIA is 

asymptotically distributed as chi square, and significant values of HIIA indicate that the 

IIA assumption is violated (Hausman and McFadden 1984). The Hausman specification 

test involves the following steps: 

1- Estimate the error coefficients of the full model with all M categories of the 

dependent variable included; these coefficients are contained in Êf. 

2- Estimate the error coefficients of a restricted model by eliminating one or 
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more outcome categories; theses coefficients are contained in Êr. 

3- Let Ê*f represents Êf after eliminating all coefficients not estimated in the 

restricted model. The Hausman specification test of IIA is defined as 

(Hausman and McFadden 1984): 

HIIA = (Êr – Ê*f )ʹ [Var (Êr  ) – Var ( Ê*f )]-1 (Êr – Ê*f )      (3.23) 

HIIA is asymptotically distributed as chi square with degrees of freedom equal to 

the rows in Êr. In this dissertation, the Hausman specification test will be applied on each 

outcome pair of the dependent variable (i.e. crash severity) separately, excluding the 

other category of the dependent variable. Since the property damage is assumed to be the 

base category, as it is the most frequent occurred category, therefore the test will be 

applied on the minor injury vs disabled injury first, and second; it will be applied on the 

minor injury vs fatal injury, and lastly; it will be applied on the disabled injury vs fatal 

injury. For each outcome pair, the test statistic HIIA will be obtained and compared to the 

full model with all outcomes. If the value of HIIA for any pair is significant, then the IIA 

assumption is violated and the MNL cannot be used in the modeling process. If the values 

of HIIA for all pairs are insignificant, then the IIA assumption holds and the MNL can be 

used in the modeling process.  

3.5.6: Multicollinearity  

Multi-collinearity is the existence of linear relationships among the independent 

variables that can create inaccurate estimates of the regression coefficients, inflate the 

standard errors of the regression coefficients, give false, non-significant p-values, and 
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degrade the predictability of the model (Green 2012). The source of the multi-collinearity 

might come from data collection, sampling techniques, political or legal constraints, and 

outliers. Testing the multi-collinearity can be achieved by: (1) visual inspection of 

pairwise scatter plots of independent variables, and looking for near-perfect linear 

relationships between them; (2) Eigenvalues and Condition Indices; and (3) considering 

the variance inflation factors (VIF). The VIF is the most widely used test to measure how 

much the variance of the estimated regression coefficients are inflated as compared to 

when the predictor variables are not linearly related. The VIF may be calculated for each 

predictor by doing a linear regression of that predictor on all the other predictors, and 

then obtaining the R2 from that regression. The VIFs obtained by the linear regression 

can still be used in logistic regression models, because the concern is with the 

relationship among the independent variables included in the model, not with the 

functional form of the model (Menard 2002). Thus, a VIF of 1.6 tells us that the variance 

(the square of the standard error) of a particular coefficient is 60% larger than it would be 

if that predictor was completely uncorrelated with all other predictors. 

The VIF has a lower value of 1.0 but no upper bound. As a rule of thumb, if VIF 

is more than 10.0, then multicollinearity is considered a serious problem, and must be 

corrected (Hoerl and Kennard 1970; Menard 2002; Green 2012). Variance inflation 

factors are scaled measures of the correlation coefficient between variable j and the rest 

of the independent variables. Specifically, 

VIFj = 
1

1−𝑅𝑗
2             (3.24) 
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where, 

R2
j: is the coefficient of determination of the regression model that includes all 

predictors except the jth predictor.  

Variance inflation factors are often given as the reciprocal of the above formula. 

In this case, they are referred to as the tolerances. If R2j equals zero (i.e. no correlation 

between j and the remaining independent variables), then VIFj equals 1.0, and this is the 

minimum value. 

3.5.7: The Generalized Hosmer-Lemeshow Statistic 

The generalized Hosmer-Lemeshow test is used as an important goodness of fit 

measure to assess whether or not the observed events match expected events, by 

subgrouping the probabilities estimated from the data (Lemeshow and Hosmer 1982; 

Hosmer et al. 2013). The data set, of size n, is sorted according to the probabilities 

estimated from the final fitted MNL model. Then the data set is partitioned into several 

(Hosmer and Lemeshow recommend 10) equal-sized groups. The first group corresponds 

to the n/10 observations having the highest estimated probabilities. The next group 

corresponds to the n/10 observations having the next highest estimated probabilities, etc.  

A Pearson-like chi square statistic is constructed based on the observed and expected 

group frequencies. In order to get the generalized test statistic (HL), we suppose that we 

have a sample of n independent observations, (xi, yi), i = 1, . . ., n. Recoding yi into 

binary indicator variables yij, such that yij = 1 when yi = j and yij = 0, otherwise (i = 

1, . . ., n and j = 0, . . ., c − 1). After fitting the model, let πij denote the estimated 
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probabilities for each observation (i = 1, . . ., n) for each possible outcome (j = 0, . . ., c 

− 1). By sorting the observations according to 1 − πi0, the complement of the estimated 

probability of the reference outcome. We then form g groups, each containing 

approximately n/g observations. For each group, we calculate the sums of the observed 

and estimated frequencies for each outcome category as follows (Fagerland and Hosmer 

2012): 

Okj = ∑ 𝑦𝑙𝑗𝑙 ∈ 𝛺𝑘
                  (3.25) 

Ekj = ∑ 𝜋𝑙𝑗𝑙 ∈ 𝛺𝑘
                   (3.26) 

Where Okj is the observed frequency, Ejk is the expected frequency, k = 1, . . ., g; j 

= 0, . . ., c − 1; and Ωk denotes indices of the n/g observations in group k. 

The multinomial goodness-of-fit (HL) test statistic is the Pearson’s chi-squared 

statistic from the table of observed and estimated frequencies, and is given as (Fagerland 

and Hosmer 2012): 

Cg = ∑ ∑
(𝑂𝑘𝑗− 𝐸𝑘𝑗 )2

𝐸𝑘𝑗

𝑐−1
𝑗=0

𝑔
𝑘=1          (3.27) 

The distribution of Cg is chi-squared and has (g−2) × (c−1) degrees of freedom 

(Fagerland et al. 2008). The null hypothesis is that the differences between the observed 

and predicted events are insignificant so the fitted model is correct, while the alternative 

hypothesis is that the differences are significant so the fitted model has deficiency and 

incorrect. If the test statistic HL is insignificant, then we will accept the null hypothesis, 

and conclude that the fitted model is a good fit. If the test statistic HL is significant, then 
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we will reject the null hypothesis, and conclude that the data do not fit the hypothesized 

fitted MNL regression model.  

3.5.8: The Classification Table of MNL 

The classification table is another method to assess the goodness of fit of the 

MNL regression model. In this table the observed values for the dependent outcome and 

the predicted values (at a user defined cut-off value, for example p = 0.50) are cross-

classified to indicate the correct % of predicted cases. This percent statistic assumes that 

if the estimated p is greater than or equal to 0.5 then the event is expected to occur and 

not occur otherwise. The bigger the % correct predictions, the better the model fit. We 

suppose for n observations that c (j, j’) is the (j, j’) th element of the classification table, 

j, j’ = 1, …, J. c (j, j’) is the sum of the frequencies for the observations whose actual 

response category is j (as row) and predicted response category is j’ (as column) 

respectively. Then, the percentage of total correct predictions of the model is given by 

(Kleinbaum and Klein 2010; Long and Freese 2014): 

% total correct prediction = ( 
∑ 𝑐 (𝑗,𝑗′)𝑛

𝑗=1

𝑛
 ) * 100%    (3.28) 

The percentage of correct predictions for response category j is given by: 

% correct prediction of j = [
𝑐 (𝑗,𝑗′)

∑ 𝑛𝑖𝑗
𝑚
𝑖=1

 ] * 100%    (3.29) 

3.5.9: The Pseudo R-squares 

In ordinary least squared (OLS) regression there is a non-pseudo R-square, which 

is often generated as a goodness-of-fit measure, and is given by: 
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R2 = 1 - 
∑ (𝑦𝑖− �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̄�)2𝑛
𝑖=1

                 (3.30) 

where n is the number of observations in the model, y is the dependent variable, 

y-bar is the mean of the y values, and y-hat is the value predicted by the model. The 

numerator of the ratio is the sum of the squared differences between the actual y values 

and the predicted y values. The denominator of the ratio is the sum of squared differences 

between the actual y values and their mean.   

When analyzing data with a multinomial logistic regression, there is no an 

equivalent statistic to R-squared. The estimates from a logistic regression are found by 

the maximum likelihood estimation rather than the least squared estimation, so the OLS 

approach to goodness-of-fit does not apply.  However, to evaluate the goodness-of-fit of 

logistic models, several pseudo R-squares have been developed. They are called "pseudo" 

R-squares because they are on a similar scale, ranging from 0 to 1 (though some pseudo 

R-squares never achieve 0 or 1) with higher values indicating better model fit, but they 

cannot be interpreted as one would interpret an OLS R-squared, and different pseudo R-

squares can present different values (Menard 2000). Some of the popular pseudo R-

squares are: 

McFadden’s R-square, which is defined as (McFadden 1974): 

R2
McF = 1 - 

ln 𝐿𝑀

ln 𝐿𝑜
            (3.31) 

Where L0 is the value of the likelihood function for a model with no predictors 

(i.e. with intercept only), and LM is the likelihood function for the model being estimated. 
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The ratio of the McFadden R-square indicates the level of improvement over the intercept 

model offered by the full model. Since a likelihood falls between 0.0 and 1.0, so the log 

of a likelihood is less than or equal to zero. If a model has a very low likelihood, then the 

log of the likelihood will have a larger magnitude than the log of a more likely model. 

Thus, a small ratio of log likelihoods indicates that the full model is a far better fit than 

the intercept model. When comparing two models on the same data, McFadden's would 

be higher for the model with the greater likelihood.  

Another pseudo R-square is the Cox and Snell R2 which is defined as (Cox and 

Snell 1989): 

R2
C&S = 1 – ( 

𝐿0

𝐿𝑀
 ) 2/n

        (3.32) 

where n is the sample size. The Cox and Snell R-square indicates the level of 

improvement of the full model over the intercept model. This pseudo R-squared has a 

maximum value that is less than 1.0 when the full model predicts the outcome perfectly 

and has a likelihood of 1.0.  The Nagelkerke R-square adjusts Cox & Snell's so that the 

range of possible values extends to 1.0 by dividing by its maximum possible value, (1-

L0)
2/n.  If the full model perfectly predicts the outcome and has a likelihood of 1.0, then 

the Nagelkerke R-square = 1.0, which is defined as (Nagelkerke 1991): 

R2
NK = 

1−(
𝐿0
𝐿𝑀

)2/𝑛

1−(𝐿0 )
2/𝑛           (3.33) 

Pseudo R-squares are useful tools in evaluating multiple models predicting the 

same outcome on the same dataset, but they cannot be interpreted independently or 
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compared across different datasets.  In other words, a pseudo R-squared statistic without 

context has little meaning. A pseudo R-squared only has meaning when compared to 

another pseudo R-squared of the same type, on the same data, predicting the same 

outcome (Menard 2002; Tjur 2009). In this case, the higher pseudo R-squared indicates 

which model better predicts the outcome.    

3.5.10: Estimation of Marginal Effects  

Marginal effects are useful estimates of the impact of a one-unit change of an 

independent variable (predictor) on the dependent variable. The average marginal effects 

are interpreted as the effect of a one-unit change in an independent variable (keeping all 

other independent variables constant at their mean values) on dependent variable. It is 

common to use a single average marginal effect value for all observations of an 

independent variable. Elasticity analysis can also be used to interpret the effect of a 

specific independent variable on the dependent variable, but with a 1.0% change instead 

of a one-unit change. In MNL, the marginal effect of an explanatory variable (predictor) 

is the partial derivative of the event probability with respect to the predictor of interest 

(i.e. the change in the event probability for a unit change in the predictor). The marginal 

effect for a dummy independent variable is the difference of the predicted probability 

values at their different levels (Long and Freese 2014). The values of the marginal effects 

reflect the slopes of lines tangent to each of the predictors that is drawn tangent to the 

fitted probability curve at the selected point. The slope of the tangent line is the change in 

event probability, p, measured at two points one unit apart along this straight line. If the 

probability curve is linear (near p=0.5) at the selected point, then the marginal effect will 
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approximate the probability change when changing the predictor by one unit. If the 

probability curve is nonlinear (near the smallest and largest values of p), the marginal 

effect might deviate from the change (Kleinbaum and Klein 2010; Long and Freese 

2014). For multinomial logistic regression models, the possible response values are 

unordered with levels i=1, 2, ..., k. The probability of response level i is given by (Freese 

and Long 2000): 

pi = 
𝐸𝑋𝑃 (𝑋ʹ𝛽𝑖)

∑ (𝐸𝑋𝑃 (𝑋ʹ𝛽𝑖))𝑗
            (3.34) 

where Xʹ is the predictor of interest, and βi is the regression coefficient (i.e. log 

odd) of Xʹ. The marginal effect of the jth predictor, Xj, on pi is given by: 

𝜕𝑝𝑖

𝜕𝑋𝑗
 =  𝑝𝑖 [ 

𝜕𝑋ʹ𝛽𝑖

𝜕𝑋𝑗
 - ∑ (𝑝𝑘𝑘

𝜕𝑋ʹ𝛽𝑘

𝜕𝑋𝑗
)]        (3.35) 
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CHAPTER 4: APPLICATIONS OF MISSOURI CRASH DATA  

4.1: Missouri Crash Data 

To better illustrate the analysis framework presented in Chapter 3, Missouri crash 

data as reported by the Missouri State Highway Patrol (MSHP) and recorded in the 

Missouri Statewide Traffic Accident Records System (STARS) are analyzed. STARS is 

the primary source of crash data in the State of Missouri since 1978. The STARS crash 

data (in MS Excel format) can be publicly obtained from an online query portal at the 

MSHP website (MSHP 2016). In the state of Missouri, law enforcement agencies are 

required to investigate traffic crashes on public roadways if they involve a death or 

personal injury or property damage over $500.00, and to submit a Missouri Uniform 

Traffic Crash Report (MUCR) to STARS. Once the MUCR is approved by the Missouri 

State Highway Patrol, it will become a part of STARS data.  In this application, three 

years of crash data (2013-2015) are considered. Each record in this database, is attributed 

with the number of persons killed and injured, property damage, latitude and longitude of 

each crash location, number of vehicles involved in the crash, type of the vehicle 

involved, speed involvement, alcohol involvement, the accident type, construction zone 

involvement, driver’s aggressiveness involvement, texting and cell phone involvement, 

light conditions, and the driver’s age.  

4.2: Crash Data Terminology 

STARS uses the following terms differentiate among crash types (MSHP 2016):  

 Alcohol involved traffic crashes: any crash in which one or more drivers 

or pedestrians were drinking and, which in the opinion of the investigating 
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officer, their intoxicated condition contributed to the cause of the crash. 

 Speed involved traffic crashes: any crash where a contributing 

circumstance was either exceeding the speed limit or going too fast for 

conditions. Too fast for conditions indicates a vehicle's speed was too fast 

for conditions at the time of the crash which includes road, weather, and 

other conditions, and in the opinion of the investigating law enforcement 

officer, the driver error contributed to the cause of the crash. 

 Aggressive driving: any driver of a motorized vehicle who has one or 

more of the following contributing circumstances: exceeding the speed 

limit, driving too fast for conditions, improper passing, violating a signal 

or sign, following too closely, improperly using a signal, improper lane 

usage or lane change, and failing to yield. 

 Construction/Work Zone: an area of a road where construction, 

maintenance, or utility work activities are identified by warning signs, 

signals, or indicators on transport devices that mark the beginning and the 

end of a work activity. Work zones also include roadway sections where 

there is a moving work activity such as lane line painting or marking or 

roadside mowing if the beginning of the work activity is designated by 

warning signs or signals. 

4.3: Missouri GIS Road Data 

Missouri GIS road data was obtained from the Missouri Spatial Data Information 

Service (MSDIS). This road data includes the annual average daily traffic (AADT), the 

travel way direction, the county name, the city name, the road geometry (i.e. grade/level 
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and number of lanes), the speed limits, and the road classification (MSDIS 2016).  

4.4: Crash Severity Categories 

There are different injury severity scales in the US. The most popular scale is the 

(KABCO) proposed by the National Safety Council (NSC) in 1990 and frequently used 

by law enforcement for classifying injuries. This acronym lists the five levels of injury-  

from most severe to least severe: K, killed (fatal); A, disabling injury or incapacitating 

injury; B, evident injury or non-incapacitating injury; C, possible injury; and O, no 

apparent injury or property damage only. Other types of injury severity data may include 

detailed information on trauma location and extent of injury that uses the Abbreviated 

Injury Scale (AIS), as proposed by the American Association for Automotive Medicine 

(Savolainen et al. 2011). AIS scores describe the severity of injury on a scale of 0.0 (no 

injury) to 6.0 (unsurvivable). Another scale is the Injury Severity Score (ISS) used by 

many hospitals, which is a measure of overall injury severity calculated by summing the 

squares of the AIS scores for each of the three most severely injured ISS body regions 

(head/neck, face, chest, abdomen and pelvic contents, extremities or pelvic girdle, and 

external), and its score ranges from 1.0 to 75.0 (Baker et al. 1974). In the US, each state 

uses different severity scale in reporting crashes. In the state of Missouri, the STARS data 

includes only four severity injury categories (i.e. property damage, minor injury, disabled 

injury, and fatal).  As such, crash severity (i.e. the dependent variable) is modeled in this 

dissertation using the following four STARS severity categories: 

 Property-Damage-Only: A property damage crash that includes any crash 

in which no person was killed or injured but property was damaged in the 

incident. 
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 Minor Injury: An injury crash in which one or more persons received an 

evident injury but not disabling in the incident. 

 Disabled Injury: An injury crash in which one or more persons received a 

disabling in the incident. 

 Fatal: A fatal crash includes any crash in which one or more persons were 

killed and their death occurred within 30 days of the incident. 

If a crash result in more than one injury severity category, then the most severe 

category would be considered for reporting. For instance, if a crash resulted in fatal, and 

property damage, then this crash would be reported as fatal (MSHP 2016).  

4.5: I-70 Corridor and Boone County Roads in Missouri 

This dissertation models crash severity for two types of transportation corridors: 

1) Interstate I-70 in Missouri (Figure 4.1), and 2) roadways in Boone County Missouri 

(MO) (Figure 4.2). The I-70 corridor in MO is a multi-lane divided highway that 

traverses the State of Missouri west to east with a total length of 403 km (250 mile). 

Boone County, MO has a total area of 1280.0 square km (496.0 square miles), and its 

county seat is Columbia, the fourth-largest city in Missouri and the home of the 

University of Missouri. The STARS and roadway data were carefully examined, labelled, 

filtered, and outliers and missing data were excluded from the analysis. The total 

numbers of the observed crashes within the three years 2013-2015 are 5869.0 along the I-

70 corridor and 2348.0 along roads in Boone County, as shown in Table 4.1. A summary 

of the crash data by the level of severity is shown in Table 4.2.  
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             Figure 4.1: Interstate I-70 and Boone County in Missouri 

 

  Figure 4.2: Boone County roads and major cities 
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 Table 4.1: Observed crashes along I-70 and roads in Boone County, MO 

 

 

 

 

 

 

 

 

 

 

 

 

Year 2013 2014 2015 Total  

Interstate I-70, MO 1918 2009 1942 5869 

Boone County roads, MO 794 811 743 2348 

 

Table 4.2: Observed crashes by severity level 

Severity Level 2013 2014 2015 Total 

I-70 Boone I-70 Boone I-70 Boone I-70 Boone 

Property 
Damage Only  

1479 547 1605 603 1474 530 4558 1680 

Minor Injury 371 213 340 173 397 178 1108 564 

Disabling 
Injury 

63 31 46 28 57 30 166 89 

Fatal Injury 5 3 18 7 14 5 37 15 

 

The STARS system provides the latitude and longitude coordinates of each 

reported crash, rather than reporting the crash characteristics by road segment as is done 

by reporting agencies in other states. The latitude and longitude of each crash can be used 

to generate point features in a GIS so that crashes can be compared relative to other 

geographic features. All crashes that occurred within the boundaries of intersections are 

excluded from the analysis given the AASHTO (2011) sight distance used in this 

dissertation as a risk factor does not apply to the intersection boundaries, and therefore 

only crashes outside of intersections are considered. Given this criteria, 2164.0 crashes 

were excluded and 5869.0 retained for the I-70 datasets, 837.0 crashes were excluded and 

2348.0 retained for Boone County dataset. 
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4.6: MO Route-5 Highway for Assessing the PSD 

Since the passing sight distance (PSD) is only applied in practice on two-lane 

highways, MO Route-5 is used to assess the PSD as another study site given that the 

other two datasets include multilane and/or urban roadways. MO Route 5 is the longest 

two-lane highway in Missouri with a total length of 571 km (355 mile) that traverses the 

entire state from north to south, as shown in Figure 4.3. The GIS MO Route 5 data was 

obtained from the Missouri Spatial Data Information Service (MSDIS).  

 

            Figure 4.3: MO Route 5  

4.7: The Digital Elevation Models (DEMs) 

The Digital Elevation Models (DEMs) were used to assess the stopping and 

decision sight distances along the I-70 corridor and Boone roads. In addition, the DEMs 

were also used to assess the passing sight distance and locating the passing and no-
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passing zones along the MO Route 5. All DEMs were acquired from the Missouri Spatial 

Data Information Service (MSDIS) for the sight distance analysis. The resolution of the 

DEMs was 30 m x 30 m (with 2,100 row by 2,100 column). There were eleven DEMs 

that spanned the I-70 corridor, one DEM that covered Boone County, and thirteen DEMs 

that covered the length of MO Route 5 as shown in Table 4.3. The number of observer 

points generated for decision sight distance (using a maximum point spacing of 330.0 m) 

along I-70 corridor was 1247.0, and for Boone County (using a maximum point spacing 

of 200.0 m) was 9407.0. The number of observer points generated for passing sight 

distance (using a maximum point spacing of 320 m) along MO Route 5 was 2104.0.  

Table 4.3: DEMs used in dissertation 

I-70 Corridor, MO MO Route 5 

MSDIS DEM’s Code County MSDIS DEM’s Code County 

jackson. e00.gz Jackson ozark. e00.gz Ozark 

lafayet. e00.gz Lafayette douglas. e00.gz Douglas 

saline. e00.gz Saline wright. e00.gz Wright 

cooper. e00.gz Cooper laclede. e00.gz Laclede 

boone. e00.gz Boone camden. e00.gz Camden 

callaway. e00.gz Callaway morgan. e00.gz Morgan 

montgom. e00.gz Montgomery moniteau. e00.gz Moniteau 

warren. e00.gz Warren cooper. e00.gz Cooper 

stchar. e00.gz Saint Charles howard. e00.gz Howard 

stlouis. e00.gz Saint Louis chariton. e00.gz Chariton 

stlcity. e00.gz City of St. Louis linn. e00.gz Linn 

- - sullivan. e00.gz Sullivan 

- - putnam. e00.gz Putnam 
   

4.8: Partitioning the Crash Data into Training and Testing   

In order to assist in the evaluation of the performance of the crash prediction 

techniques to be applied later, the STARS crash data were first partitioned into training 

and testing datasets. The training dataset will be used to develop the prediction model, 



www.manaraa.com

 

 

147 

 

and the testing dataset will be used to evaluate or test the developed model against the 

observed data. In line with other analyses of crash data (Cameron and Trivedi 1998; 

Chang 2005; El-Basyouny and Sayed 2009), the STARS data for the entire period (2013-

2015) was randomly partitioned into two parts, a training dataset that contains 70% of the 

observations, and a testing dataset that contains 30% of the observations. The training 

dataset includes 4,108 observed crashes for I-70 corridor and 1,761 for Boone County 

road network. The testing dataset includes 1,644 observed crashes for I-70 corridor and 

704 for Boone County road network, as shown in Table 4.4. 

Table 4.4: Training and testing datasets 

Data type % observations  Observed crashes (2013-2015) 

            I-70 Boone County 

Entire dataset 100 5869 
 

2348 

Training dataset 70 4108 1644 

Testing dataset 30 1761 704 

 

4.9: Selection of Independent Variables  

The occurrence of crashes and their degrees of severity can be attributed to 

different risk factors associated with road geometry, traffic operations, vehicle types, 

driver factors, and the environment. In general, focusing on a few independent variables, 

and leaving out some other important variables in crash modeling could generate 

simplified models that can produce incorrect parameter estimates and inferences 

(Arminger et al. 1995; Glenberg 1996; Lord and Persaud 2000; El-Basyouny and Sayed 

2006; Caliendo et al. 2007; Geedipally et al. 2012). For example, Persaud and Dzbik 

(1993) consider only average annual daily traffic volume in modeling road crash 
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frequency, and later added the road geometry variables to produce a more advanced 

model (Persaud et al. 2000). Caliendo et al. (2007) consider limited number of risk 

factors related to road geometry, traffic flow, weather, and road surface in modeling crash 

occurrence. Abdel-Aty (2003) consider only driver age and sex along with the road 

geometry, and traffic volumes in crash modeling.  

Given that past research has only made use of limited numbers/types of   

independent variables, this dissertation seeks to investigate the use of a wide range of 

independent variables (i.e. risk factors) for estimating the parameters and inferences. The 

following group factors are included in the analysis:  

 Road geometry (grade or level; number of lanes) 

 Road classification (rural or urban; existing of construction zones)  

 Environment (light conditions) 

 Traffic operation (annual average daily traffic, AADT)  

 Driver factors (driver’s age; speeding; aggressive driving; driver 

intoxicated conditions; the use of cell phone or texting)  

 Vehicle type (passenger car; motorcycles; truck) 

 Number of vehicles involved in the crash  

 Time factors (hour of crash occurrence; weekday; month) 

 Accident type (animal; fixed object; overturn; pedestrian; vehicle in 

transport). 

              In addition, this dissertation explores integration of local spatial autocorrelation 

(Gi* statistic) of each crash occurrence and the AASHTO (2011) recommended sight 

distance as potential risk factors in models of crash severity prediction. Table 4.5 lists the 
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group factors used in the analysis while Table 4.6 lists the risk factors included in the 

analysis, their interpretations, and the variable indicators. 

Table 4.5: Analysis group factors  

Group factors Variables included in the analysis 

Road Geometry 1 - grade or level 
2 - number of lanes  

Road Classification 1 - rural or urban 
2 - construction zones 

Time  1 - hour  
2 - weekday  
3 - month 

Environment  1 - light conditions 

Driver behavior 1 - driver age 
2 - speeding 
3 - aggressive driving 
4 – driver’s intoxicated condition 
5 – use of cell phone or texting 
6 - number of vehicles involved 

            Vehicle  1 - type of vehicle involved in the crash 
 

Traffic operation 1 - AADT 
2 - direction of travel 

Accident type 1 - the type of accident occurred 

Spatial autocorrelation index 1 - Gi* 

Sight distance 1 - AASHTO Decision sight distance  

 

Table 4.6: Risk factors and their interpretation 

Variable name  Interpretation Variable indicators 

GRADE_LEVEL The geometric condition of the road 
location where the crash occurred 

0 - level 
1 - grade 

NO_LANES The number of road lanes per each 
direction where the crash occurred 

1 - one lane 
2 - two lanes 
3 - three lanes 
4 - four lanes 
5 - five lanes 
6 - six lanes or more 



www.manaraa.com

 

 

150 

 

RURAL_URBAN The area classification where the crash 
occurred 

0 - rural 
1 - urban 

CZONE The ongoing work zone activity of the 
location where the crash occurred 

0 - yes 
1 - no 

LOC_Gi* The local spatial auto-correlation Gi* z-
score of the crash occurred 

0 - high-high (HH)   
1 - low-low (LL)  
2 - random  

 

SIGHT_DIST The conformity of road location where 
the crash occurred to the recommended 
AASHTO decision sight distance (DSD) 

0 - conform to AASHTO 
DSD 
1 - does not conform to 
AASHTO DSD 

AADT The Annual Average Daily Traffic of the 
location where the crash occurred 

Numeric values in 1000s 
of vehicles. 

 

HOUR The hour at which the crash occurred  Values from 0.0 am to 
23.0 pm 

 

DAY_WEEK The week-day on which the crash 
occurred 

1 - Sun 
2 - Mon 
3 - Tues     
4 - Wed 
5 -  Thurs   
6 - Fri  
7 - Sat 

MONTH The month of the year in which the crash 
occurred 

Values from 1 to 12  

LIGHT_COND The light condition at the time of the 
crash occurrence 

0 - Daylight 
1 - Dark, lighted 
2 - Dark, unlighted 

DR_AGE The age of the driver of the vehicle 
involved in the crash 

0 - < 21 years 
1 - (21 to 64) years 
2 - > 64 years 

VEH_TYPE The type or body of the vehicle involved 
in the crash 

0 - passenger car 
1 - motorcycle 
2 - truck 

 

NO_VEHICLE The total number of vehicles involved in 
the crash occurrence 

1 - one vehicle 
2 - two vehicles 
3 - three vehicles 
4 - four vehicles 
5 - five vehicles 
6 – six or more vehicles 
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4.10: Applications of Temporal Autocorrelation (TA) 

The Durbin Watson (DW) test is applied to the I-70 corridor and Boone County 

roads at two temporal levels; aggregation by year, and aggregation over all three years. 

Data for each year in aggregate is separately tested using (month, weekday, and hour) as 

the independent temporal variables, and then the aggregate three-year period is tested 

using the same independent variables. 

The Breusch-Godfrey (LM) test is applied to the I-70 corridor and Boone County 

roads for the first 36 lags at two temporal levels; aggregation by year, and aggregation 

over all three years. Data for each year in aggregate is separately tested using (month, 

weekday, and hour) as the independent temporal variables, and then the aggregate three-

year period is tested using the same independent variables. The LM test is applied with 

degrees of freedom equal to the number of lags (i.e. 36 degrees of freedom). The 

minimum recommended number of lags that should be considered for the LM and LBQ 

tests is roughly taken as the natural logarithm of the number of observations within the 

ACC_TYPE The type or the main cause of the crash 
occurrence 

1 - animal 
2 - fixed object 
3 - overturn 
4 - pedestrian 
5 – vehicle in transport 

DR_DRINK The driver has intoxicated condition 
contributed to the cause of the crash.  

0 - yes 
1 - no 

SPEED Exceeding the speed limit of the road 
section at which the crash occurred 

0 - yes 
1 - no 

DR_AGRESSIVE Aggressive driving due to one or more of 
the following conditions: improper 
passing, violating a sign, following too 
closely, improperly using a signal, 
improper lane change, and failing to 
yield 

0 - yes 
1 - no 

CELL_TEXT The use of cell phone or texting by the 
driver at the time of the crash 
occurrence 

0 - yes 
1 - no 
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dataset (Tsay 2010), and larger values are recommended to detect the existence of 

temporal autocorrelation. For I-70 corridor, the number of observations of the aggregated 

three years (2013-2015) is 5869, and the minimum recommended number of lags = ln 

(5869) = 8.7. For Boone County roads, the number of observations of the aggregated 

three years (2013-2015) is 2348, and the minimum recommended number of lags = ln 

(2348) = 7.7. This dissertation uses 36 lags in both the LM and LBQ tests instead of the 

minimum recommended number. 

The Box-Ljung Q statistic (LBQ) is applied to the I-70 corridor and Boone 

County roads for the aggregated three-year period (2013-2015) using the time 

independent variables (month, weekday, and hour) and for the first 36 lags. In addition, 

correlograms of the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) for the I-70 corridor and the Boone County roads for the aggregated three-year 

period (2013-2015) are presented. 

4.10.1: The Significant TA of I-70 (2014) Dataset 

Both the Durbin-Watson and the Breusch-Godfrey tests indicated the existence of 

significant temporal autocorrelation within the I-70 (2014) dataset. For the I-70 (2013) 

and I-70 (2015) the temporal autocorrelation was not significant. For the Boone County 

roads, the temporal autocorrelation was not significant for all three years (2013, 2014, 

2015). The complete results are presented in Chapter 5. 

4.11: Applications of Spatial Autocorrelation  

Crashes along MO I-70 corridor and along the roads in Boone County, MO are 

analyzed to assess whether they are spatially clustered, dispersed, or random. First, the 

aggregated level of the crash data for the three years’ period (2013 – 2015) was analyzed. 
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Second, the data for only one year (2015) was analyzed. The one-year analysis was 

conducted in order to discover any hidden effects that might exist within the three years’ 

level regarding the spatial autocorrelation.  

The Global Moran’s I and the Global (General) Gi*for the entire I-70 corridor and 

the entire Boone County roads, were first calculated at both the aggregated three years’ 

level (2013-2015) and the one-year level (2015). The Global Moran’s I and the General 

Gi* evaluate whether the overall highway crashes are clustered, dispersed, or random, 

and assesses the overall pattern and trend of the data. The ArcMap 10.2.2 Spatial 

Statistics toolkit was applied to compute the Global Moran’s I, and the General Gi* for 

the two datasets. For determining the Global Moran’s I and the General Gi* for I-70 

corridor, the layer of spatial join of crash incidents to road segments of I-70 (2013-2015) 

was used as the input feature class, the crash severity was used as the input field, and the 

inverse distance was chosen as the conceptualization method for the spatial relationships. 

Likewise, for determining the Global Moran’s I and the General Gi* for Boone County 

roads, the layer of spatial join of crash incidents to road segments of Boone roads (2013-

2015) was used as the input feature class, the crash severity was used as the input field, 

and the inverse distance was employed as the conceptualization method for the spatial 

relationships. The significant high and low spatial autocorrelation crashes, and outliers 

are identified using the Anselin Local Moran's I, and the local Gi* statistic. The z-scores 

and p-values are used to evaluate the statistical significance of the computed values. In 

order to determine the Anselin local Moran’s I and the local Gi* for the I-70 corridor, the 

layer of spatial join of crash incidents to road segments was used as the input feature 

class, the crash severity was used as the input field, the Euclidean distance, and the 
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inverse distance was employed as the conceptualization method for the spatial 

relationships. Likewise, for determining the Anselin local Moran’s I and the local Gi* for 

Boone County roads, the layer of spatial join of crash incidents to road segments was 

used as the input feature class, the crash severity was used as the input field, the 

Euclidean distance, and the inverse distance was employed as the conceptualization 

method for the spatial relationships.      

Since the Gi* statistic has identified a larger number of the significant (HHs) and 

significant (LLs) compared to the Moran’s I, for both the I-70 corridor and the Boone 

County roads, therefore the Gi* statistic (i.e. the Gi*’s z-scores) was used in modeling 

the crash severity in this dissertation. In addition, the clustering pattern of both the three- 

year period (2013-2015) and the one-year period (2015) was almost identical for both the 

I-70 corridor and the Boone County roads, which implies that the three years’ (2013-

2015) level has no hidden or unobserved effects of spatial clustering, therefore, the three 

years’ dataset was chosen to be included in the analysis, and each crash point was 

assigned a Gi*’s z-score spatial autocorrelation value at the three years’ level. 

Since the Anselin local Moran’s I has identified different clustering patterns than 

the local Gi* statistic for both the I-70 corridor and the Boone County roads, therefore 

this dissertation recommends using a combination (hybrid) of these methods in hot spot 

analysis. Using a combination of indices can improve the clustering patterns. To couple 

the Moran’s, and Gi* autocorrelation indices into a new hybrid method, any combination 

maybe used to depend on the user’s interpretation of the results that produces the optimal 

measures. For instance, a combination of 30% Moran’s I, and 70% Gi* in determining 
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the final spatial autocorrelation measure of crashes is presented in this dissertation to 

show a new spatial clustering pattern of crashes.  

4.12: Applications of Sight Distance 

To model the stopping sight distance (SSD) along a road using viewsheds, 

observation locations must first be generated along roads in the study areas.  In this 

application, vertices are added to each road segment along the I-70 corridor such that 

each vertex is not more than 220.0 m from the next, and vertices are added to roads in 

Boone County such that no vertex is more than 105 m apart.  Once the vertices have been 

added to the road segments, they are then extracted as point features from which visibility 

can be evaluated. The 220.0 m distance represents the recommended AASHTO stopping 

sight distance, which corresponds to the mostly assigned speed limit of 110 km/h (70 

mph) at the I-70 in MO. The 105.0 m distance represents the recommended AASHTO 

stopping sight distance, which corresponds to the average assumed speed limit of 70 

km/h (45 mph) at the Boone County roads in MO. 

To model the decision sight distance (DSD) along a road using viewsheds, 

vertices are added to road segments along the I-70 corridor such that vertices are not 

more than 330.0 m from the next, while vertices are added to roads in Boone County such 

that they are not further than 200m apart. Once the vertices have been added to the road 

segments, they are then extracted as point features from which visibility can be evaluated. 

The 330.0 m distance represents the recommended AASHTO decision sight distance 

(Avoidance Maneuver C on rural highways), which corresponds to the speed limit of 110 

km/h (70 mph) at the I-70 in MO. The 200.0 m distance represents the recommended 

AASHTO decision sight distance (Avoidance Maneuver C on rural highways), which 
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corresponds to the average assumed speed limit of 70 km/h (45 mph) at the Boone 

County roads in MO. 

The viewshed analysis revealed that the available stopping sight distance (SSD) 

conforms to the AASHTO (2011) standards throughout the I-70 corridor in MO. The 

SSD was equal to or more than the 220.0 m sight distance. However, the viewshed 

analysis also revealed that some segments at the I-70 do not conform to the AASHTO 

(2011) decision sight distance standards of 330.0 m, and they may have visibility issues 

relative to AASHTO (2011) standards. The decision sight distance at these segments was 

used as potential risk factor in the crash severity modeling. 

Likewise, the viewshed analysis revealed that the available stopping sight 

distance throughout Boone County roads conforms to the AASHTO (2011) standards. An 

average speed limit of 70 km/h (45 mph) was assumed for roads in this area, which 

would yield a corresponding AASHTO (2011) stopping sight distance of 105 m. The 

SSD was equal to or more than the 105.0 m sight distance throughout the Boone roads. 

However, the viewshed analysis also revealed that some segments of the Boone roads do 

not conform to the AASHTO standards of 200.0 m decision sight distance that represents 

the (Avoidance Maneuver C on rural highways), and they may have visibility issues 

relative to AASHTO (2011) standards. The decision sight distance at these segments was 

used as a potential risk factor in the crash severity modeling. 

Since the passing sight distance (PSD) is only applied in practice to two-lane 

highways, therefore, MO Route-5 was examined to evaluate the AASHTO (2011) PSD 

criteria. To incorporate PSD in the methodology, observer points must be generated from 

which visibility along the roadway can be evaluated.  To accomplish this, vertices are 
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added to MO Route 5 segments such that each vertex is no more than 320.0 m from the 

next vertex. This distance represents the recommended AASHTO (2011) passing sight 

distance, which corresponds to an average speed limit of 100 km/h (60 mph) along MO 

Route 5, as shown in Figure 4.4. 

 

Figure 4.4: Speed limit of MO Route 5 

The viewshed analysis resulted in two classifications of segments regarding the 

PSD: 1) segments having passing sight distance that conform to the AASHTO (2011) 

PSD standards throughout MO-5 (i.e. Passing zones PZs); and 2) segments that might not 

conform to the AASHTO PSD standards and may have visibility issues (i.e. No-passing 

zones NPZs).  

4.13: Applications of Multinomial Logistic Regression 

This dissertation applies multinomial logistic regression (MNL) to model the 

relationships of the crash severity categories with the independent variables. The I-70 

corridor and Boone County crash datasets are tested under the assumptions of the MNL. 

The categories of the dependent variable in this dissertation (i.e. fatal, disabling injury, 

minor injury, property-damage-only) is considered nominal (i.e. cannot be ordered in any 

logical way). This research seeks to investigate the use of a wider range of independent 
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variables (i.e. risk factors) in crash severity modeling, given that past research has only 

made use of limited numbers/types of independent variables. In addition, this dissertation 

seeks to introduce a variety of new procedures in presenting the results of the MNL 

applications that have not been reported in other crash severity models, including: 1) the 

use of the odd ratios as regression estimates instead of using regression coefficients to 

interpret the results of prediction; 2) a focus on the assumption of the independence of 

irrelevant alternatives (IIA) that is very important in the MNL modeling, using the 

Hausman specification test; 3) consideration of the generalized Hosmer-Lemeshow test 

as an important goodness of fit measure to assess whether or not the observed incidents 

match the predicted incidents; 4) use of the classification table as a measure of goodness 

of fit to determine the percent of corrected prediction cases; 5) testing for the 

multicollinearity among the independent variables as precondition assumption; 6) se of 

the pseudo R squares as potential goodness of fits instead of classical measures of 

goodness of fit, such as the Deviance, the Akaike Information Criteria (AIC), and the 

Bayesian Information Criteria (BIC); and 7) presenting the marginal effects of all 

independent variables upon the dependent variable. The next sections illustrate the testing 

procedures that were applied to both the I-70 and Boone County datasets. 

4.13.1: Testing the Effects of Independent Variables  

Multinomial logistic regression (MNL) is usually conducted using maximum 

likelihood estimation, which is an iterative procedure. The first iteration (called iteration 

zero) is the log likelihood of the null or empty model; that is, a model with no predictors.  

At the next iteration, the predictors are included in the model.  At each iteration, the log 

likelihood decreases as the goal is to minimize the log likelihood. When the difference 
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between successive iterations is very small, the model is said to have converged, the 

iterating stops, and the final log likelihood (LR) statistic is computed. The log likelihood 

ration (LR) test statistic is obtained for the I-70 corridor and the Boone County road 

network for both the training and testing data, using the Stata 14 software package and 

reported in Table 4.7. 

Table 4.7: The LR statistic results 

Dataset # Observations LR statistic p-value 

I-70 Training data 4108 339.12 0.0000 

I-70 Testing data 1761 122.44 0.0000 

Boone Training data 1644 125.03 0.0000 

Boone Testing data 704 89.74 0.0061 
 

The effect of any independent variable on the outcome can be tested using the 

likelihood ratio (LR) statistic test. The null hypothesis of this test is that the independent 

variables do not affect the dependent variable. The null model is calculated by obtaining 

the log likelihood of the observations with just the response variable in the model from 

iteration zero (i.e. model with intercept alone). The final fitted model is calculated by 

obtaining the log likelihood of observations with all the independent variables in the 

model from the final iteration after convergence. The difference of these two yields a chi-

squared LR statistic which is a measure of how well the independent variables affect the 

outcomes or dependent variable categories (Greene 2012). If the LR statistic for the 

overall model is significant, then there is evidence that the independent variables are 

effective and they have contributed to the prediction of the outcome. Table 4.7 shows that 

the Likelihood Ratio (LR) test statistic for both the I-70 corridor and Boone County 

datasets is significant at the 95% confidence level with p-values less than 0.05 for the 
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training and testing datasets, implying that all the independent variables included in the 

models are not equal to zero, and this indicates that they are effectively contributing to 

modeling the crash severity for all categories. Thus, it can be concluded that the overall 

chosen models for the I-70 corridor and Boone County data are good fits. 

4.13.2: Testing the IIA Assumption 

The Independence of Irrelevant Alternatives (IIA) assumption in multinomial 

logistic regression means that adding or deleting alternative outcome categories does not 

affect the odd ratios among the remaining outcomes (McFadden et al. 1976; Hausman 

1978). The Hausman specification test is used to test the IIA assumption for both the I-70 

dataset and the Boone County dataset (both training and testing datasets). The results of 

this test are shown in Table 4.8, as computed using the Stata 14 software package. 

Table 4.8: The IIA Assumption results 

Dataset Minor Injury vs. 
Disabled 

Minor Injury vs. 
Fatal 

Disabled vs. Fatal 

HIIA p-value HIIA p-value HIIA p-value 

I-70 Training 1.46 0.5461 1.39 0.6725 1.73 0.7748 

I-70 Testing 1.08 0.6726 1.14 0.7453 1.24 0.6833 

Boone Training 1.27 0.4655 1.53 0.4973 1.31 0.5376 

Boone Testing 0.72 0.4994 0.83 0.5274 0.55 0.4775 
 

The null hypothesis of the test is that the IIA does not exist and under the 

alternative hypothesis the IIA does exist. The Hausman specification test statistic HIIA is 

asymptotically distributed as chi square, and significant values of HIIA indicate that the 

IIA assumption is violated (Hausman and McFadden 1984). The Hausman specification 

test was run on each outcome pair of the dependent variable (i.e. crash severity) 

separately, excluding the other category of the dependent variable. The base category was 
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assumed to be the records were property damage was reported. First, the test was run on 

the second vs the third categories (i.e. minor injury vs disabled), second; it was run on the 

second vs the fourth categories (i.e. minor injury vs fatal), and lastly; it was run on the 

third vs the fourth categories (i.e. disabled vs fatal). Table 4.7 shows that for all cases the 

HIIA statistic was insignificant at the 95% confidence level with their p-values greater 

than 0.05 for both the I-70 corridor and the Boone County datasets. Therefore, the null 

hypothesis can be accepted and it can be concluded that the IIA assumption has not been 

violated so that the odd ratios of any outcome pair of the dependent variable are 

determined without reference to the other category. 

4.13.3: Testing the Generalized Hosmer-Lemeshow Statistic 

The generalized Hosmer-Lemeshow statistic assesses whether or not the observed 

events match the predicted events, by subgrouping the probabilities estimated from the 

data (Lemeshow and Hosmer 1982; Hosmer et al. 2013). This test works by sorting the 

data according to the probabilities estimated from the final fitted MNL model. Then the 

sorted dataset is partitioned into several equal-sized groups. Then, the HL test statistic 

that follows a chi-square distribution is constructed based on the observed and predicted 

group frequencies. The null hypothesis is that the differences between the observed and 

predicted events are insignificant so the fitted model is correct, while the alternative 

hypothesis is that the differences are significant so the fitted model has deficiency and 

incorrect. If the test statistic HL is insignificant, then we will accept the null hypothesis, 

and conclude that the fitted model is a good fit. If the test statistic HL is significant, then 

we will reject the null hypothesis, and conclude that the data do not fit the hypothesized 

fitted MNL regression model. The generalized Hosmer-Lemeshow test is applied to both 
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the I-70 dataset and the Boone County dataset (both training and testing datasets) with ten 

groups for each dataset. This test was again conducted using the Stata 14 software 

package and the results of this test are summarized in Table 4. 9. 

Table 4.9: The Generalized Hosmer-Lemeshow test results 

Dataset # Observations # Groups HL statistic p-value 

I-70 Training 4108 10 27.406 0.286 

I-70 Testing 1761 10 27.134 0.298 

Boone Training 1644 10 20.384 0.675 

Boone Testing 704 10 19.743 0.752 
 

Table 4.9 shows that the HL test statistic for both the I-70 corridor and Boone 

County road network is insignificant at the 95% confidence level with p-values larger 

than 0.05 for the training and testing datasets. Therefore, the null hypothesis cannot be 

rejected and it can be concluded that the overall models of I-70 corridor and Boone 

County road network are good fit, and there is a good match between the predicted events 

and the observed events for all categories of the dependent variable.  

4.13.4: Testing the Multicollinearity 

Multicollinearity occurs when two or more predictors in the model are highly 

correlated that can create inaccurate estimates of the regression coefficients, and inflate 

the standard errors. The MNL model requires that multicollinearity be low between 

predictors in the model. To test for this assumption, the variance inflation factor (VIF) is 

used to detect multicollinearity among all predictors in our MNL logistic regression 

models, as it is the most widely used test for multicollinearity (Greene 2008). The VIF 

measures how much the variance of the estimated regression coefficients is inflated as 

compared to when the predictors are not linearly related. The VIF may be calculated for 
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each predictor by doing a linear regression of that predictor on all the other predictors. 

The VIFs obtained by the linear regression can still be used in logistic regression models, 

because the concern is with the relationship among the independent variables included in 

the model, not with the functional form of the model (Menard 2002). The VIF has a 

lower value of 1.0 but no upper bound. As a rule of thumb, if VIF is more than 10.0, then 

multicollinearity is considered a serious problem, and must be corrected (Hoerl and 

Kennard 1970; Menard 2002; Green 2008). The VIF statistic is obtained for the I-70 

corridor and the Boone County road network data using the Stata 14 and the results are 

reported in Table 4.10. 

Table 4.10: VIF results 

Independent Variable VIF 

I-70 corridor Boone County road network 

MONTH     1.023 1.044 

DAY_WEEK    1.013 1.009 

HOUR     1.026 1.054 

NO_VEHICLE     2.099 2.339 

DIRECTION     6.397 1.060 

LIGHT_COND     1.113 1.258 

ACC_TYPE     2.264 2.635 

DR_DRINK     1.046 1.131 

SPEED     1.408 1.406 

CZONE     1.072                 1.014                

DR_AGGRESSIVE     1.373          1.372         

CELL_TEXT     1.008    1.008   

DR_AGE 1.015      1.035     

VEH_TYPE 1.044 1.082 

RURAL_URBAN      2.455 1.515 

NUMBER_LANES     3.504 1.600 

AADT     4.896 1.653 

GRADE_LEVEL     6.457 1.016 

SIGHT_DIST    1.054 1.044 

Gi *    1.218 1.289 
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The VIFs of all the independent variables are considerably less than 10.0 for both 

the I-70 and Boone County datasets as can be seen from Table 4.10. The VIFs of the 

independent variables (Direction and Grade-Level) of the I-70 dataset are 6.397 and 

6.457 respectively, but they are still less than 10.0. The VIFs of the other predictors are 

even less than 5.0. Based on this, it can be concluded that multicollinearity is not a 

serious problem in both datasets, and this implies that the assumption of low 

multicollinearity is achieved in the MLN model.  

4.13.5: The Classification Table 

The classification table is used to assess the goodness of fit of the MNL 

regression model. In this table the observed values for the dependent outcomes and the 

predicted values (at a user defined cut-off value) are cross-classified to indicate the 

correct % of predicted cases. This percent statistic assumes that if the predicted 

probability is greater than or equal to the (cut-off value) then the event is expected to 

occur and not occur otherwise. The bigger the % correct predictions, the better the model 

fit. The classification tables for the I-70 corridor dataset and for the Boone County road 

network (for both training and testing data) are obtained using the SPSS 23 and the 

results are detailed in Tables 4.11 and 4.12 respectively. 

Table 4.11: I-70 classification table results 

Severity 
Categories 

I-70 Training Data I-70 Testing Data 

# obs. % correct Overall % 
correct 

# obs. % correct Overall % 
correct 

Property Damage 3186 99.6% 

92.2% 

1372 97.3% 

91.5% 
Minor Injury 785 65.4% 323 69.8% 

Disabled 114 72.8% 52 76.2% 

Fatal 23 77.1% 14 83.6% 
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Table 4.12: Boone roads classification table results 

Severity 
Categories 

Boone County Training Data Boone County Testing Data 

# obs. % correct Overall % 
correct 

# obs. % correct Overall % 
correct 

Property Damage 1175 95.4% 

86.5% 

505 98.2% 

91.6% 
Minor Injury 397 62.9% 167 73.6% 

Disabled 61 68.3% 28 79.4% 

Fatal 11 81.8% 4 86.9% 

 

Table 4.12 shows how many cases are correctly predicted for each category of the 

dependent variable. For example, for the I-70 training data, there are 3,168 observed 

incidents involving property damage and the percent correctly predicted is 99.6%, 785 

observed incidents involving minor injury with 65.4% correctly predicted, 114 observed 

incidents involving disabled with 72.8% correctly predicted, and 23 observed incidents 

involving fatal crashes and the percent correctly predicted is 77.1%. The overall 

percentage gives the overall percent of cases that are correctly predicted by the full 

model, which is 92.2% for the I-70 training data and 91.5% for testing data. This overall 

percentage is an important goodness-of-fit measure that indicates how well the data have 

fitted the full model. Likewise, for the Boone County road network, the overall 

percentage of the training data is 86.5% and 91.6% for testing data. These overall 

percentages of correctly predicted cases demonstrate that our MNL models are good fit, 

confirming the results obtained by the generalized Hosmer-Lemeshow test statistic that 

there is a good match between the predicted events and the observed events for all 

categories of the dependent variable.  
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4.13.6: The Pseudo R-squares 

Multinomial logistic regression does not have an equivalent to the R-squared that 

is found in ordinary least square regression; however, there are some pseudo-R-square 

statistics that have been developed for MNL. The McFadden R-square treats the log 

likelihood of the intercept model as a total sum of squares, and the log likelihood of the 

full model as the sum of squared errors, the Cox and Snell's R-square reflects the 

improvement of the full model over the intercept model through the ratio of log 

likelihood, and the Nagelkerke R-square try to adjust the Cox and Snell's so that the 

range of possible values extends to 1.0. Pseudo R-squares are generally useful tools in 

evaluating multiple models predicting the same outcome on the same dataset, but they 

cannot be interpreted independently or compared across different datasets (Menard 2002; 

Tjur 2009). In this case, the higher pseudo R-squared indicates which model better 

predicts the outcome. Three types of pseudo R-squares (McFadden’s, Cox and Snell’s, 

and Nagelkerke’s) are obtained for the I-70 corridor and the Boone County road network 

(both training and testing datasets), using SPSS 23, as shown in Table 4.13. First, these 

pseudo R-squares are applied to the intercept only model for each dataset, and then they 

are applied to the full model with all predictors to capture any improvement in the fitted 

full model.  

Table 4.13: The pseudo R-squares results 

Pseudo R-
square 

I-70 Training  I-70 Testing  Boone Training  Boone Testing  

Intercept Full Intercept Full Intercept Full Intercept Full 

McFadden 0.025 0.118 0.028 0.138 0.062 0.128 0.066 0.211 

Cox - Snell 0.031 0.123 0.047 0.147 0.076 0.172 0.052 0.256 

Nagelkerke 0.046 0.132 0.054 0.166 0.085 0.223 0.068 0.332 
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The improvement of the full model over the intercept model through the three 

types of pseudo R-squares is clear for both the training and testing datasets of I-70 and 

Boone County road network. For example, the McFadden R-square value for the I-70 

training dataset is increased from 0.025 for the intercept to 0.118 for the full model, the 

Cox and Snell R-square value is increased from 0.031 for the intercept to 0.123 for the 

full model, and the Nagelkerke R-square is also increased from 0.046 for the intercept to 

0.132 for the full mode. Likewise, the three R-squares are increased in their values from 

the intercept to the full model for the I-70 testing dataset, the Boone training and testing 

datasets. The higher pseudo R-squared values for the full models compared to the 

intercept models indicate that the fitted full models better predict the outcomes of the 

dependent variable, and the predictors are effective in modeling the different outcomes of 

the crash severity. 
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CHAPTER 5: RESULTS 

This dissertation focuses on modeling four outcome categories of severity injury 

of vehicular crash data, namely; property-damage-only, minor-injury, disabled-injury, 

and fatal injury. In this chapter, the results of detecting the temporal autocorrelation 

among the independent variables that are related to the time by the DW, LM, and LBQ 

tests are first presented, followed by the correction results of the differencing, and the 

Cochrane-Orcutt procedure that were applied to the (2014) I-70 dataset. Next, the spatial 

autocorrelation results are presented using the Moran’s I, the Gi*. Next, the results of the 

available decision sight distance of the roadway compared to AASHTO (2011) criteria 

are presented, and roadway segments with inadequate sight distance that do not conform 

to the AASHTO (2011) standards are identified and then incorporated in the modeling 

process as risk factors. Next, the results of the passing sight distance on the MO Route 5 

highway are presented. Lastly, the odd ratios, the risk factors that contributed to the crash 

severity, and marginal effects of the multinomial logistic regression are revealed.  

5.1: Impacts of Temporal Autocorrelation 

5.1.1: DW Test Results 

Table 5.1, shows the results of the Durbin-Watson (DW) test for the I-70 and the 

Boone County datasets at the one-year aggregate level. It can be seen that the temporal 

autocorrelation of the I-70 dataset for the year 2013 is found to be 3.64% with p value of 

0.0512 (non-significant at alpha of 0.05); for the year 2014 year is found to be 7.19% 

with p-value of 0.0002 (significant at alpha of 0.01); and for the year 2015 is found to be 

2.38% with p-value of 0.1371 (non-significant at alpha of 0.05). The temporal 
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autocorrelation of the Boone County dataset for the year 2013 is found to be -1.18% with 

p-value of 0.5518 (non-significant at alpha of 0.05); for the year 2014 year is found to be 

0.15% with p-value of 0.7437 (non-significant at alpha of 0.05); and for the year 2015 is 

found to be -1.17% with p-value of 0.5896 (non-significant at alpha of 0.05). So, the only 

significant temporal autocorrelation is existed within the I-70 (2014) data, which should 

be removed before using this dataset in the modeling process.  

Table 5.1: DW statistic for I-70 and Boone County roads  

Year Durbin-Watson Autocorrelation P-value Decision 

I-70 Boone I-70 Boone I-70 Boone I-70 Boone 

2013 1.927 2.013 0.0364 -0.0118 0.0512 0.5518 non-sig non-sig 

2014 1.843 1.997 0.0719 0.0015 0.0002 0.7437 sig. non-sig 

2015 1.952 2.021 0.0238 -0.0117 0.1371 0.5896 non-sig non-sig 
 

5.1.2: LM Test Results 

Table 5.2, shows the results of the LM test for the I-70 and the Boone County 

datasets at the one-year aggregate level. The LM value (using 36 lags or 36 degrees of 

freedom) of the I-70 dataset for the year 2013 is found to be 31.022 with p-value of 

0.7042 (non-significant at alpha of 0.05); for the year 2014 is found to be 60.129 with p-

value of 0.0071 (significant at alpha of 0.01); and for the year 2015 is found to be 50.876 

with p-value of 0.0512 (non-significant at alpha of 0.05).  The LM value (using 36 lags or 

36 degrees of freedom) of the Boone County dataset for the year 2013 is found to be 

30.016 with p-value of 0.7482 (non-significant at alpha of 0.05); for the year 2014 year is 

found to be 40.229 with p-value of 0.2884 (non-significant at alpha of 0.05); and for the 

year 2015 is found to be 22,289 with p-value of 0.9642 (non-significant at alpha of 0.05). 

The results of the LM test confirms the results of the DW test that the I-70 dataset for the 
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year 2014 contains a significant temporal autocorrelation as shown in Table 5.2. 

Table 5.2: LM statistic for I-70 and Boone County roads 

Year LM statistic 
 

p-value Decision 

I-70 Boone I-70 Boone I-70 Boone 

2013 31.022 30.016 0.7042 0.7482 non-sig non-sig 

2014 60.129 40.229 0.0071 0.2884 Sig. non-sig 

2015 50.876 22.289 0.0672 0.9642 non-sig non-sig 
 

5.1.3: Differencing Results 

Since a significant temporal autocorrelation is found to be existed within the I-70 

(2014) data, then this should be removed before using this dataset in the modeling 

process (Washington et al. 2010; Lord and Mannering 2010; Savolainen et al. 2011). In 

order to remove any significant temporal autocorrelation that may be existed in a dataset, 

one of the first remedial measures should be to investigate the omission of one or more of 

the explanatory variables, especially variables that are related to time. In this dissertation, 

the three time variables in the datasets (month, weekday, hour) have potential influence 

on the dependent variable (i.e. crash severity), therefore they are unlikely to be removed 

from the analysis. Hence, the next step is to apply a differencing procedure to all time 

independent variables in the dataset to convert them into their differences values, and 

then rerun an ordinary least squared regression model from the origin by deleting the 

intercept from the model (Chatfield 1996). The first order differencing is applied to the I-

70 (2014) dataset, and the ordinary least square residuals were obtained, then the Durbin-

Watson (DW) test is calculated to check for the temporal autocorrelation. The result of 

the DW statistic showed that the temporal autocorrelation was still existed even after 
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applying the first order differencing. Although the first order differencing is enough to 

show whether the differencing procedure can be used to remove the serial (temporal) 

correlation or not (Pindyck and Rubinfeld 1981), however, more differencing orders (up 

to 7 orders) are applied to the I-70 (2014) dataset, and the Durbin-Watson test (DW 

statistic) is calculated each time to check for the temporal autocorrelation. The results 

showed that the temporal autocorrelation was not removed by this method. Table 5.3 

shows seven differencing orders that were applied to the data and their DW statistics. 

Table 5.3: Differencing results for 2014 I-70 data  

Difference order DW statistic Auto correlation p-value Decision 

D1 1.841 0.0731 0.0002 sig. 

D2 1.833 0.0724 0.0001 sig. 

D3 1.831 0.0722 0.0001 sig. 

D4 1.823 0.0812 0.0001 sig. 

D5 1.821 0.0822 0.0001 sig. 

D6 1.829 0.0781 0.0001 sig. 

D7 1.820 0.0825 0.0001 sig. 
 

5.1.4: Cochrane-Orcutt Results 

Since the differencing procedure was not effective in eliminating the temporal 

autocorrelation from the I-70 dataset of the year 2014, then it was necessary to apply the 

Cochrane-Orcutt procedure for the Autoregressive AR (1) term. The iterative Cochrane-

Orcutt procedure was applied to the I-70 (2014) dataset, and an optimized rho (i.e. the 

residual autocorrelation coefficient) value of 0.07333 was obtained using the Stata 14 

software that minimizes the estimated sum of squared residuals (ESS), then the DW 

statistic was calculated for the transformed residuals. The results showed that the 

temporal autocorrelation was removed from the I-70 (2014) dataset, as shown in Table 
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5.4. The DW statistic for the I-70 (2014) dataset is changed after applying the Cochrane-

Orcutt procedure from 1.843 (with a significant p-value of 0.0002) to 1.992 (with a non-

significant p-value of 0.7167).  

Table 5.4: Cochrane-Orcutt results for 2014 I-70 data 

Iteration # rho ESS DW p-value Decision 

1 0.07295 568.242 

1.992 0.7167 non-sig 2 0.07333 568.241 

3 0.07333 568.241 
 

After removing the temporal autocorrelation from the I-70 (2014) dataset, the DW 

test and the LM test were applied for the three years’ period (2013-2015) for both the I-70 

and Boone County datasets. The DW statistic for the three years’ period (2013-2015) is 

1.971 with temporal autocorrelation of 1.47% for the I-70 dataset and 2.017 with 

temporal autocorrelation of (- 0.87%) for the Boone County dataset respectively, both of 

which were non-significant, as shown in Table 5.5.  

Table 5.5: Overall DW statistic for I-70 and Boone County roads 

Year Durbin-Watson Autocorrelation p-value Decision 

I-70 Boone I-70 Boone I-70 Boone I-70 Boone 

2013-2015 1.971 2.017 0.0147 -0.0087 0.1289 0.6601 non-sig non-sig 
 

The LM value for the three years’ period (2013-2015) using 36 lags is 41.203 for 

the I-70 dataset and 34.352 for the Boone County dataset, both of which were non-

significant, as shown in Table 5.6. The results from the DW test and the LM test indicate 

that there is no significant temporal autocorrelation between each of the temporal 

independent variables (i.e. month, weekday, and hour) and the dependent variable (i.e. 

crash severity) in the (2013-2015) dataset. 
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Table 5.6: Overall LM statistic for I-70 and Boone County roads 

Year LM statistic 
 

p-value Decision 

I-70 Boone I-70 Boone I-70 Boone 

2013-2015 41.203 34.352 0.2534 0.5471 non-sig non-sig 

 

5.1.5: The LBQ Test Results 

The Box-Ljung Q statistic (LBQ) is applied to the aggregated three-year period 

(2013-2015). Table 5.7 shows the Box-Ljung Q statistic, the auto correlation function 

(ACF) and the partial autocorrelation function (PACF) with their p-values for the I-70 

dataset for the first 36 lags. Table 5.8 shows the Box-Ljung Q statistic, the auto 

correlation function (ACF) and the partial autocorrelation function (PACF) with their p-

values for the Boone County dataset for the first 36 lags. The LBQ statistic, the ACF, and 

the PACF for all 36 lags were non-significant for both the I-70 and the Boone County 

datasets. The LBQ statistic increases with the lag progress, indicating no temporal 

autocorrelation within these two datasets, confirming the results of the DW test and the 

LM test. Figure 5.1 and Figure 5.2 show correlograms of ACF and PACF for the I-70 

dataset and the Boone County datasets for the three years’ period (2013-2015) 

respectively. 

Table 5.7: LBQ test results for I-70 

Lag 
# 

ACF   PACF LBQ-Statistic  p-value 

1 0.015 0.015 1.2720 0.259 

2 -0.009 -0.009 1.7093 0.425 

3 -0.024 -0.024 5.1985 0.158 

4 0.021 0.021 7.7212 0.102 

5 -0.006 -0.007 7.9130 0.161 

6 -0.013 -0.013 8.9711 0.175 

7 0.016 0.018 10.564 0.159 
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8 0.018 0.017 12.576 0.127 

9 0.001 0.001 12.588 0.182 

10 -0.002 -0.000 12.608 0.246 

11 -0.001 -0.001 12.612 0.319 

12 -0.013 -0.013 13.555 0.330 

13 0.011 0.012 14.215 0.359 

14 -0.007 -0.007 14.469 0.415 

15 0.008 0.008 14.876 0.460 

16 -0.022 -0.022 17.683 0.343 

17 0.006 0.006 17.875 0.397 

18 0.003 0.003 17.937 0.460 

19 -0.001 -0.002 17.946 0.526 

20 0.002 0.003 17.963 0.590 

21 0.003 0.003 18.011 0.648 

22 0.012 0.011 18.804 0.657 

23 -0.010 -0.010 19.441 0.675 

24 -0.018 -0.017 21.297 0.621 

25 -0.025 -0.024 24.926 0.467 

26 -0.019 -0.020 27.163 0.401 

27 -0.017 -0.017 28.857 0.368 

28 -0.005 -0.006 29.012 0.412 

29 -0.005 -0.005 29.160 0.457 

30 0.011 0.010 29.869 0.472 

31 -0.006 -0.005 30.071 0.514 

32 -0.028 -0.028 34.843 0.334 

33 0.002 0.005 34.877 0.379 

34 0.029 0.030 39.955 0.223 

35 0.018 0.016 41.843 0.198 

36 0.000 0.002 41.843 0.232 

 

Table 5.8: LBQ test results for Boone County roads 

Lag 
# 

ACF   PACF  LBQ-Statistic  p-value 

1 -0.009 -0.009 0.1767 0.674 

2 -0.031 -0.031 2.3798 0.304 

3 -0.020 -0.021 3.3379 0.342 

4 0.026 0.025 4.9545 0.292 

5 0.048 0.048 10.918 0.053 

6 0.038 0.041 14.380 0.076 

7 -0.007 -0.002 14.496 0.063 

8 -0.015 -0.012 15.035 0.058 

9 0.020 0.019 16.016 0.067 

10 -0.022 -0.027 17.163 0.071 

11 0.012 0.008 17.486 0.094 

12 -0.019 -0.020 18.328 0.106 

13 0.032 0.032 20.742 0.078 

14 0.007 0.007 20.861 0.105 

15 -0.007 -0.006 20.991 0.137 

16 -0.041 -0.038 24.918 0.071 
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17 -0.018 -0.019 25.664 0.081 

18 -0.009 -0.015 25.852 0.103 

19 0.009 0.004 26.030 0.129 

20 0.015 0.015 26.550 0.148 

21 -0.003 0.005 26.576 0.185 

22 -0.026 -0.022 28.231 0.168 

23 -0.002 0.001 28.242 0.207 

24 0.005 0.001 28.305 0.247 

25 -0.008 -0.010 28.468 0.287 

26 -0.008 -0.010 28.617 0.329 

27 0.011 0.013 28.902 0.366 

28 0.009 0.009 29.077 0.409 

29 -0.030 -0.028 31.241 0.354 

30 -0.032 -0.030 33.654 0.295 

31 -0.007 -0.008 33.787 0.334 

32 -0.004 -0.011 33.830 0.379 

33 0.012 0.008 34.174 0.411 

34 -0.010 -0.009 34.436 0.447 

35 -0.017 -0.009 35.143 0.461 

36 -0.021 -0.018 36.226 0.458 

 

 

Figure 5.1: Correlogram of I-70 (2013-2015) dataset 
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Figure 5.2: Correlogram of Boone County roads (2013-2015) dataset 

5.2: Impacts of Spatial Autocorrelation 

5.2.1: Global Moran’s I and General Gi* 

The Global Moran’s I and the General Gi* statistic evaluate whether the overall 

highway crashes are clustered, dispersed, or random, and assess the overall clustering 

patterns of the data. The Global Moran’s I, z scores, and p-values are reported in Table 

5.9 for both the I-70 corridor and the Boone County roads.  
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Table 5.9: Global Moran's I for I-70 and Boone County, MO 

Dataset Year Global Moran’s I z-score p-value Decision 

I-70 2013-2015 0.594 415.09 0.0000 sig. 

2015 0.589 136.23 0.0000 sig. 

Boone County 2013-2015 0.636 485.62 0.0000 sig. 

2015 0.583 177.65 0.0000 sig. 
 

The results of the analysis are interpreted within the context of the null 

hypothesis. For the Global Moran's I statistic, the null hypothesis states that the attributes 

(i.e. the I-70 and Boone County roads) being analyzed are randomly distributed among 

the features in the study area (i.e. there is no global spatial autocorrelation exists for the 

entire area). Since the p-values in Table 5.9 for both the I-70 and the Boone County roads 

are smaller than 0.05 (using a confidence level of 95%), then this indicates that the 

Global Moran’s I is significant for the three years’ level and the one year level as well, 

and hence, we can reject the null hypothesis, and state that it is quite possible that the 

spatial distribution of the overall I-70 and Boone County road crashes is the result of 

clustered spatial processes, and this observed spatial patterns of the crashes could very 

well be one of many possible versions of complete spatial clustering.  

The General Gi* statistic, z scores, and p-values are shown in Table 5.10 for both 

the I-70 corridor and the Boone County road network. The results of the analysis again 

are interpreted within the context of the null hypothesis. For the General Gi* statistic, the 

null hypothesis states that the attributes (i.e. the I-70 and Boone County) being analyzed 

are randomly distributed among the features in the study area (i.e. there is no global 

spatial autocorrelation exists for the entire area). 
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Table 5.10: General Gi* for I-70 and Boone County, MO 

Dataset Year General Gi* z-score p-value Decision 

I-70 2013-2015 0.098 - 3.952 0.0000 sig. 

2015 0.029 + 5.638 0.0000 sig. 

Boone County 2013-2015 0.055 - 18.366 0.0000 sig. 

2015 0.073 - 11.346 0.0000 sig. 
 

           Since the p-values in Table 5.10 for both the I-70 and the Boone County were 

smaller than 0.05 (using a confidence level of 95%), then this indicates that the General 

Gi* spatial autocorrelation is significant for the three years’ level and the one year level 

as well, and hence, we can reject the null hypothesis, and state that it is quite possible that 

the spatial distribution of the overall I-70 and Boone County crashes is the result of 

clustered spatial processes, and this observed spatial patterns of the crashes could very 

well be one of many possible versions of complete spatial clustering. This confirms the 

result of the Global Moran’s I for both I-70 and Boone County. 

5.2.2: Anselin Local Moran’s I and Local Gi* Statistic 

            Table 5.11 and 5.12 show the results of the significant high spatial autocorrelation 

crashes, the significant low spatial autocorrelation crashes, outliers, and the non-

significant random crashes of the I-70 and the Boone County by Anselin Moran’s I and 

local Gi* statistic respectively at the three years’ (2013-2015) and the one year (2015). 

The Anselin Moran’s I identified significant clusters of high values (HH), significant 

clusters of low values (LL), significant outliers in which a high value is surrounded 

primarily by low values (HL), significant outliers in which a low value is surrounded 

primarily by high values (LH), and non-significant random crashes. The Gi* identified 
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significant HHs and LLs, and non-significant random crashes. The Gi* does not identify 

the outliers HLs or LHs. The Moran’s I identified (2442) significant HHs crashes for the 

I-70 dataset at the three years’, whereas the Gi* statistic identified (3298) HHs crashes 

for the I-70 dataset at the three years. The Moran’s I identified (798) significant HHs 

crashes for the I-70 dataset at the one year (2015), whereas the Gi* statistic identified 

(979) significant HHs crashes for the I-70 dataset at the one year (2015). The Moran’s I 

identified (1735) significant LLs crashes for the I-70 dataset at the three years’, whereas 

the Gi* statistic identified (1957) significant LLs crashes for the I-70 dataset at the three 

years. The Moran’s I identified (568) significant LLs crashes for the I-70 dataset at the 

one year (2015), whereas the Gi* statistic identified (665) significant LLs crashes for the 

I-70 dataset at the one year (2015). The Moran’s I identified (147) significant HLs and 

(329) significant LHs for the I-70 dataset at the three years’, compared to the Gi* that 

identified (0) significant HLs and (0) significant LHs as outliers. The Moran’s I identified 

(55) significant HLs and (69) significant LHs for the I-70 dataset at the one years (2015), 

compared to the Gi* that identified (0) significant HLs and (0) significant LHs as outliers. 

So, it is clear that the Gi* statistic has identified a larger number of the (HHs) and (LLs) 

compared to the Moran’s I. The Moran’s I identified (808) significant HHs crashes for 

the Boone County dataset at the three years’, whereas the Gi* statistic identified (1040) 

significant HHs crashes for the Boone County dataset at the three years. The Moran’s I 

identified (220) significant HHs crashes for the Boone County dataset at the one year 

(2015), whereas the Gi* statistic identified (291) significant HHs crashes for the Boone 
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dataset at the one year (2015). The Moran’s I identified (1280) significant LLs crashes 

for the Boone dataset at the three years’, whereas the Gi* statistic identified (1162) 

significant LLs crashes for the Boone dataset at the three years. The Moran’s I identified 

(316) significant LLs crashes for the Boone dataset at the one year (2015), whereas the 

Gi* statistic identified (382) significant LLs crashes for the Boone dataset at the one year 

(2015). The Moran’s I identified (61) significant HLs and (14) significant LHs for the 

Boone dataset at the three years’, compared to the Gi* that identified (0) non-significant 

HLs and (0) non-significant LHs as outliers. The Moran’s I identified (18) significant 

HLs and (16) significant LHs for the Boone dataset at the one years (2015), compared to 

the Gi* that identified (0) non-significant HLs and (0) non-significant LHs as outliers. So 

again, it is clear that the Gi* statistic has identified a larger number of the (HHs) 

compared to the Moran’s I.  

Table 5.11: Crash clustering patterns of I-70, MO 

Index Year High-High 
HH 

Low-Low 
LL 

Outliers 
HL 

Outliers 
LH 

Random  

Anselin 
Moran’s I 

2013-2015 2442 1735 147 329 1216 

2015 798 568 55 69 452 

Gi* statistic 2013-2015 3298 1957 0 0 614 

2015 979 665 0 0 298 
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Table 5.12: Crash clustering patterns of Boone County roads, MO  

Index Year High-High 
HH 

Low-Low 
LL 

Outliers 
HL 

Outliers 
LH 

Random  

Anselin 
Moran’s I 

2013-2015 808 1280 61 14 185 

2015 220 316 18 16 173 

Gi* statistic 2013-2015 1040 1162 0 0 146 

2015 291 382 0 0 70 

 

Figure 5.3 and Figure 5.4 show the clustering pattern identified by Moran’s I for 

the I-70 corridor at the three years (2013-2015) and the one year (2015) respectively. 

Figure 5.5 and Figure 5.6 show the clustering pattern identified by Gi* statistic for the I-

70 corridor at the three years (2013-2015) and the one year (2015) respectively. The three 

years clustering pattern is very close to the one-year clustering pattern in both Moran’s I 

and Gi* statistic. For example, in Moran’s I, clusters # 1, # 2, # 4, # 6, and # 7 are almost 

similar in the three years and one-year level. Cluster # 3, and # 5 are slightly different 

(i.e. it shows only outliers, and random crashes in the three years’ level, and it shows 

outliers, random crashes, and LLs in the one-year level). Likewise, in Gi*statistic, 

clusters # 1, # 2, # 3, # 4, # 5, # 6, and # 7 are almost similar in the three years and one-

year level. The only difference is between cluster # 2 and # 3 (i.e. it shows random 

crashes, and LLs in the three years’ level, and it shows random crashes, but without LLs 

in the one-year level). In addition, the extent and type of hot spots, cold spots, outliers, 

and random crashes differ from one method to the other. For example, cluster # 2, # 4, 

and # 5 is identified by Moran’s I as outliers or random crashes, while it has been 

identified as mixed LLs and random crashes by Gi*. Clusters # 1, and # 7 are identified 
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by both methods as mostly HHs. Cluster # 2, and # 6 are identified by Moran’s as purely 

LLs, while it has been identified by Gi* as mixed LLs and random crashes. 

 

Figure 5.3: I-70 crash clustering (2013-2015) by Moran’s I 

 

   Figure 5.4: I-70 crash clustering (2015) by Moran’s I   
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   Figure 5.5: I-70 crash clustering (2013-2015) by Gi*  

 

   Figure 5.6: I-70 crash clustering (2015) by Gi* 
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Figure 5.7 and Figure 5.8 show the clustering pattern identified by Moran’s I for 

the Boone County roads at the three years (2013-2015) and the one year (2015) 

respectively. Figure 5.9 and Figure 5.10 show the clustering pattern identified by Gi* 

statistic for the Boone County roads at the three years (2013-2015) and the one year 

(2015) respectively. The three years’ clustering pattern is very close to the one-year 

clustering pattern in both Moran’s I and Gi* statistic. For example, in Moran’s I, cluster # 

1contains HHs, LLs, HLs, LHs, and random crashes in both the three years and one-year 

dataset. Cluster # 2 is almost similar in the three years and one-year level except that the 

three years contains almost purely random crashes, while the one-year contains mixed 

HLs and random dispersed crashes. Cluster # 3 is slightly different (i.e. it shows LLs, 

HLs, and random crashes in the three years’ level, and it shows random crashes, LLs, 

HLs, and LHs in the one-year level). In Gi*statistic, cluster # 1 is almost similar in the 

three years and one-year level. Cluster # 2 is slightly different (i.e. it shows LLs, and 

small number of HHs in the three years’ level, and it shows LLs, and some random 

crashes in the one-year level). Cluster # 3 is almost similar in the three years and one year 

datasets. In addition, the extent and type of hot spots, cold spots, outliers, and random 

crashes differ from one method to the other. For example, cluster # 1 is identified by 

Moran’s I as mixed HHs, LLs, HLs, LHs and random crashes while it has been identified 

as mostly HHs, LLs and random crashes by Gi*. Clusters # 2 is identified by Moran’s I 

as mostly random crashes, while it has been identified by Gi* as mostly LLs. Cluster # 3 

is identified by Moran’s I as mixed LLs, HLs, and random crashes while it has been 

identified as mostly LLs by Gi*. 
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Figure 5.7: Boone crash clustering (2013-2015) by Moran’s I    
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Figure 5.8: Boone crash clustering (2015) by Moran’s I   
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Figure 5.9: Boone crash clustering (2013-2015) by Gi*   



www.manaraa.com

 

 

188 

 

   

Figure 5.10: Boone crash clustering (2015) by Gi* 

Since the Gi* statistic has identified a larger number of the significant (HHs) and 

significant (LLs) compared to the Moran’s I, for both the I-70 corridor and the Boone 

County roads, therefore the Gi* statistic (i.e. the Gi*’s z-scores) were used in modeling 

the crash severity in this dissertation. In addition, the clustering pattern of both the three- 

year period (2013-2015) and the one-year period (2015) was almost identical for both the 

I-70 corridor and the Boone County roads, which implies that the three years’ (2013-
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2015) level has no hidden or unobserved effects of spatial clustering, therefore, the three 

years’ datasets were chosen to be included in the analysis, and each crash was assigned a 

corresponding Gi*’s z-score spatial autocorrelation value at the three years’ level. 

5.2.3: Spatial Autocorrelation by a Hybrid Method 

A combination of 30% Moran’s I, and 70% Gi* is used to render yet another 

measure of spatial autocorrelation as shown in Figure 5.11 for the I-70 corridor and 

Figure 5.12 for the Boone County roads. A new combined index was created that consists 

of (30% Moran’s I + 70% Gi*) for both the I-70 corridor and the Boone County road 

network, then the hybrid method is applied using the Getis-Ord Gi* index in ArcMap 

10.2.2 toolkits for all crashes. The results produced new statistically significant spatial 

clusters of high spatial autocorrelation values and low spatial autocorrelation values. 

From Figure 5.11 for the I-70 corridor, it can be seen that cluster # 1 in Kansas City area 

and cluster # 5 in St. Louis area become mostly LLs compared to HHs in Moran’s I and 

Gi*. This change makes sense because clusters of LLs and random crashes are more 

likely happen in big cities as they consist of few clustered crashes (Myers et al. 2013). 

Cluster # 2 and # 4 become mostly HHs compared to LLs in Moran’s I and Gi*. This 

change again makes sense because clusters of HHs are more likely happen in the 

suburban areas of big cities as they consist of large clustered crashes (Myers et al. 2013). 

Cluster # 3 remains HHs in Columbia area, which is the same as in Moran’s I and Gi*. In 

addition, the new hybrid method resulted in the removal of all the LLs in the central 

portion of the I-70 corridor compared to Moran’s I and Gi*. 
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      Figure 5.11: I-70 crash clustering via Hybrid method 

From Figure 5.12 for the Boone County road network, is can be seen that cluster # 

1 near the city of Columbia area is mixed of HHs, LLs, and random crashes compared to 

mostly HHs and LLs in Gi* and mostly outliers, HHs, and LLs in Moran’s I. Cluster # 2 

now presents insignificant random crashes compared to mostly LLs in Gi* and mostly 

outliers in Moran’s I. Clusters # 3 becomes mostly insignificant random crashes with 

some LLs compared to mixed LLs, and outliers in Moran’s I and LLs in Gi*. This change 

makes sense because clusters of LLs and random crashes are more likely happen in big 

cities (i.e. Columbia) (Myers et al. 2013), and clusters of HHs are more likely happen in 

the suburban areas of big cities as they consist of large clustered crashes (Myers et al. 

2013). The results of the new method of hybrid clustering patterns for both the I-70 

corridor and Boone County have shown improvements in the new cluster mapping 

depending on the user’s interpretation of the new patterns. Using different combination of 

Moran’s, and Gi* (i.e. 50% Moran’s + 50% Gi* for example) could result in different 
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cluster mapping. In addition, the new hybrid method could produce new clusters if 

Moran’s I is used in determining the hybrid results instead of the Gi* statistic.  

 

Figure 5.12: Boone crash clustering via Hybrid method 

Table 5.13 details the HHs, LLs, HLs, LHs, and random crashes identified by 

Moran’s I, Gi*, and the new hybrid method for the I-70 corridor. Table 5.14 details the 

HHs, LLs, HLs, LHs, and random crashes identified by Moran’s I, Gi*, and the new 

hybrid method for the Boone County roads. 
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Table 5.13: I-70 crash clustering by Moran’s I, Gi*, and Hybrid method 

Index High-High 
HH 

Low-Low 
LL 

Outliers 
HL 

Outliers 
LH 

Random 

Anselin 
Moran’s I 

2442 1735 147 329 1216 

Gi* statistic 3298 1957 0 0 614 

Hybrid 918 1459 0 0 3492 

 

Table 5.14: Boone crash clustering by Moran’s I, Gi*, and Hybrid method 

Index High-High 
HH 

Low-Low 
LL 

Outliers 
HL 

Outliers 
LH 

Random 

Anselin 
Moran’s I 

808 1280 61 14 185 

Gi* statistic 1040 1162 0 0 146 

Hybrid 322 874 0 0 1152 

 

From Table 5.13 and Table 5.14, we can see that the number of the significant hot 

spots (HHs) and (LLs) identified by the hybrid method have decreased compared to 

Moran’s I and Gi*. However, the number of insignificant random crashes identified by 

this method has increased compared to the other two methods.  

5.3: Impacts of Sight Distance 

5.3.1: Sight Distance Along I-70 Corridor  

           Table 5.15 shows the longitude, latitude, and lengths of I-70 segments with 

potential visibility issues relative to AASHTO (2011) decision sight distance (DSD) of 

330.0 m, and Figure 5.13 shows their approximate locations along I-70 corridor. 
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Table 5.15: I-70 segments with potential visibility issues  

Segment  From To Length 

km Long. Lat. Long. Lat. 

1 -94.355665 39.040854 -94.331322 39.037485 2.14 

2 -94.210207  39.022696 -94.184787   39.020336 2.21 

3 -93.905340 39.006390 -93.870017 39.004924 3.06 

4 -93.554500 38.989800 -93.530170 38.988139 2.11 

5 -93.263254 38.971130 -93.239222 38.969708 2.08 

6 -93.093837 38.953528 -93.069387 38.951666 2.12 

7 -92.972242 38.933410 -92.948582 38.933872 2.05 

8 -92.390708 38.970300 -92.366791 38.966601 2.11 

9 -92.342165 38.969390 -92.318084 38.968274 2.09 

10 -90.578508 38.797010 -90.554344 38.790528 2.21 

11 -90.204219 38.672989 -90.194226 38.653716 2.31 

 

               

Figure 5.13: I-70 segments with potential visibility issues 

Segment number 1, for instance, may have visibility issues relative to AASHTO 

(2011) decision SD as shown in Figure 5.14. Looking at the image of segment number1, 

using Google Earth, we can see that there is an interchange (also called exit) between the 
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start location of this segment (39.040854, - 94.355665) and the end location of the 

segment (39.037485, - 94.331322), as shown in Figure 5.14. It is possible that the vertical 

clearance under the interchange bridge could have an adverse effect on the available 

decision sight distance at this segment, because it could decrease the vertical scan range 

of the upper vertical angle of the driver’s eye. Another possible interpretation is that the 

entrance and exit ramp maneuvers could have an adverse effect on the available decision 

sight distance, because it could decrease the horizontal scan range (i.e. the azimuth scan 

range) of the driver’s eye at this location. 

 

Figure 5.14: MO I-70 segment 1 with potential visibility issues  

Another example is the image of segment number 8. We can see that there is an 

interchange between the start location of this segment (38.970300, - 92.390708) and the 

end location of the segment (38.966601, - 92.366791), as shown in Figure 5.15. It is 

again possible that the vertical clearance under the interchange bridge could have an 

adverse effect on the available decision sight distance at this segment, because it could 
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decrease the vertical scan range of the upper vertical angle of the driver’s eye, or it is 

possible that the entrance and exit ramp maneuvers could have an adverse effect on the 

available decision sight distance, because it could decrease the horizontal scan range (i.e. 

the azimuth scan range) of the driver’s eye at this location. 

 

Figure 5.15: MO I-70 segment 8 with potential visibility issues  

Another example is the segment number 3. We can see that there are two 

interchanges between the start of this segment (39.006390, -93.905340) and the end of 

the segment (39.004924, -93.870017), as shown in Figure 5.16. It is again possible that 

the vertical clearance under the interchange bridges could have an adverse effect on the 

available decision sight distance at this segment, because it could decrease the vertical 

scan range of the upper vertical angle of the driver’s eye, or it is possible that the entrance 

and exit ramp maneuvers of any of these two interchanges could have an adverse effect 

on the available decision sight distance, because it could decrease the horizontal scan 

range (i.e. the azimuth scan range) of the driver’s eye at this location. 
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Figure 5.16: MO I-70 segment 3 with potential visibility issues  

The remaining segments of I-70 (i.e. segments number 2, 4, 5, 6, 7, 9, 10) with 

potential visibility issues relative to AASHTO (2011) DSD can be interpreted in a similar 

way as there are interchanges between the start location and the end location of these 

segments. 

5.3.2: Sight Distance Along Boone County Roads 

Table 5.16 shows the longitude, latitude, and lengths of Boone County road 

segments with potential visibility issues relative to AASHTO (2011) decision sight 

distance of 200.0 m, and Figure 5.17 illustrates their approximate locations throughout 

the Boone County, MO.  
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Table 5.16: Boone roads segments with potential visibility issues  

Road Name From To Length km 

Lat. Long. Lat. Long. 

1-Sydow  39.205990 -92.257740  39.197193 -92.258112   0.98 

2-Dinwiddie  39.243401 -92.228303  39.236184 -92.227750   0.80 

3-Angell  39.241531 -92.169930   39.234541 -92.170834   0.78 

4-Rangeline  39.187692 -92.105960   39.178168 -92.106369   1.06 

5-Varnon  39.087813 -92.233221   39.081695 -92.233503   0.68 

6-Mcdonald  39.114700 -92.118440   39.109900 -92.118627   0.53 

7-Nature  39.051783 -92.436955   39.048180 -92.437122   0.40 

8-Hickory G.  38.950704 -92.472984   38.946218 -92.473131   0.50 

9-Purdy  38.930070 -92.171844  38.927075 -92.172013   0.33 

10-Warren  38.862713 -92.410867 38.859155 -92.409102  0.42 

11-Smith H. 38.821463 -92.385533   38.817382 -92.383916  0.47 

12-Clinken B.  38.781785 -92.183016   38.770873 -92.180108  1.24 

13-Raitt  38.708705 -92.259812   38.706569 -92.260963   0.26 

 

 

            Figure 5.17: MO Boone roads with potential visibility issues  
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            Looking at segment number 7, for example, using Google Earth, we can see that 

there are two horizontal curves between the start location of this segment (39.051783, -

92.436955) and the end location of the segment (39.048180, -92.437122), as shown in 

Figure 5.18. It is possible that the distance ahead from the start or end positions up to the 

nearest horizontal curve is less than the AASHTO (2011) DSD requirement, implying 

that the existing curves could be the reason for the inadequate DSD at this segment. 

 

Figure 5.18: MO Boone roads segment 7 with potential visibility issues  

Another example is segment number 11. We can see that there are two horizontal 

curves between the start location of this segment (38.821463, -92.385533) and the end 

location of the segment (38.817382, -92.383916), as shown in Figure 5.19. It is possible 

that the distance ahead from the start or end positions up to the nearest horizontal curve is 

less than the AASHTO (2011) DSD requirement, implying that the existing curves could 

be the reason for the inadequate DSD at this segment. 
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Figure 5.19: MO Boone roads segment 11 with potential visibility issues  

The remaining segments of Boone County that may have visibility issues relative 

to AASHTO (2011) DSD can be interpreted in a similar way as there are curves or 

blocking features (i.e. side trees) between the start location and the end location of these 

segments. 

5.3.3: Passing Sight Distance along MO Route 5  

Table 5.17 shows the latitude, longitude, and the lengths of the no-passing zones 

(NPZs) throughout MO Route 5, and Figure 5.20 shows the locations of PZs and NPZs. 

Table 5.17: The longitude, latitude, and lengths of NPZs at MO-R5 

Segment From To Length, 
km Long. Lat. Long. Lat. 

1 -93.004359 40.484525 -93.039366 40.429639 6.78 

2 -93.095767   40.370752 -93.103407   40.352586 2.11 

3 -93.104301   40.238526 -93.108841   40.220032 2.20 

4 -93.143679   40.163192 -93.151739   40.144075 2.39 

5 -93.153424   40.106560 -93.154823  40.086905 2.22 

6 -93.167665  39.955366 -93.167010   39.917416 4.22 
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7 -93.173719   39.822029 -93.175213 39.777525 4.95 

8 -92.948035   39.712250 -92.960232   39.538017 19.40 

9 -92.924321   39.519018 -92.931916   39.431446 9.76 

10 -92.849713   39.405615 -92.850153   39.368578 4.24 

11 -92.848705   39.273705 -92.848248  39.254711 2.37 

12 -92.737894   39.008679 -92.738758   38.998677 1.32 

13 -92.776593   38.934922 -92.788225   38.913645 2.88 

14 -92.826733   38.875756 -92.839573   38.857380 2.61 

15 -92.852559   38.803348 -92.858902   38.671686 14.65 

16 -92.783911   38.651579 -92.789150  38.592526 6.58 

17 -92.804933   38.501483 -92.809033  38.460242 4.60 

18 -92.828179   38.444716 -92.840909   38.440861 1.29 

19 -92.852193   38.421307 -92.852686   38.336142 9.47 

20 -92.841158   38.327190 -92.828479   38.317812 1.79 

21 -92.783003   38.043133 -92.780999   38.030541 1.48 

22 -92.766330   38.023961 -92.757785   38.016843 1.39 

23 -92.695300   37.834654 -92.686848   37.812360 2.85 

24 -92.677993 37.777665 -92.663442   37.680213 10.91 

25 -92.649409   37.664414 -92.592571  37.540851 14.62 

26 -92.590049   37.475200 -92.593311 37.392065 9.25 

27 -92.546268   37.308944 -92.521418  37.264932 5.36 

28 -92.571119   37.135156 -92.605843  37.077511 7.11 

29 -92.637784   37.021681 -92.650352   37.002673 2.32 

30 -92.662056   36.983856 -92.666214  36.940981 5.27 

31 -92.680214   36.888024 -92.667394   36.878627 1.63 

32 -92.653373   36.868902 -92.643354   36.863384 1.38 

33 -92.626141   36.850418 -92.620128   36.847817 1.22 

34 -92.604948   36.831432 -92.596547   36.825270 1.25 

35 -92.557487   36.774156 -92.547966   36.755395 2.66 

36 -92.538684   36.736304 -92.522083   36.698760 4.92 

37 -92.512340   36.679130 -92.503572   36.671346 1.46 

38 -92.479960   36.666402 -92.503176   36.670698 1.15 

39 -92.466909   36.641292 -92.456152   36.632850 1.33 

40 -92.439636   36.622524 -92.431578  36.600425 3.22 

41 -92.474234   36.565489 -92.492366   36.546843 2.84 

42 -92.481389   36.512929 -92.482681   36.499052 2.10 
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                  Figure 5.20: Locations of PZs and NPZs at MO Route 5 

 Looking at the end location (39.538017, -92.960232) of segment number 8, for 

example, using Google Earth, we can see that the surrounding area is hilly with an 

upgrade ahead, as sown in Figure 5.21. This implies that the existence of upgrades and/or 

curves could be the reason for the inadequate AASHTO (2011) passing sight distance at 

this segment. Another example is the start location (37.308944, -92.546268) of segment 

number 27. We can see that the surrounding area is also hilly with an upgrade ahead, as 

sown in Figure 5.22. This again implies that the existence of upgrades and/or curves 

could be the reason for the inadequate AASHTO (2011) passing sight distance at this 

segment. 



www.manaraa.com

 

 

202 

 

 

Figure 5.21: End location of segment 8 of MO Route 

 

Figure 5.22: Start location of segment 27 of MO Route 5 

5.4: Impacts of Multinomial Logistic Regression 

The prediction results of the MNL are shown in the following sections: 

5.4.1: Predicted Odd Ratios for I-70 Corridor 

The odd ratios in MNL models present the probability of the event divided by the 

probability of the nonevent, and they can be obtained by exponentiating the multinomial 
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logit coefficients (i.e. e (coef.)). The multinomial logistic regression model estimates (k-1) 

models, where k is the number of outcome levels of the dependent variable, and the kth 

equation is relative to the referent group. In our model, the property damage is considered 

as the referent group (i.e. base level), because it is the most frequent outcome of crash 

severity, and the other outcome levels (i.e. minor injury, disabled, and fatal) are estimated 

relative to the property damage. The standard interpretation of the multinomial logistic 

regression is that for a unit change in the predictor variable, the odd ratio of outcome m 

relative to the referent group is expected to change by its respective parameter estimate 

given the other predictors in the model are held constant (Greene 2012, Judge et al. 

1985). The predicted odd ratios for the I-70 corridor (for both training and testing data) 

are obtained using Stata 14 and reported in Table 5.18. The odd ratios are significant 

when their related p-values at the 95% confidence level are less than 0.05. If the odd 

ratios are greater than 1.0, then the predictors are positively correlated with the dependent 

variable (i.e. crash severity), and if the odd ratios are smaller than 1.0, then the predictors 

are negatively correlated with the dependent variable. In other words, if the odd ratios are 

greater than 1.0, then the predictors would increase the likelihood of the crash severity 

occurrence at the specified level, indicating positive contribution to the crash severity 

occurrence at that level, and if the odd ratios are smaller than 1.0, then the predictors 

would decrease the likelihood of the crash severity occurrence at the specified level, 

indicating negative contribution to the crash occurrence at that level.  
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Table 5.18: Predicted odd ratios for I-70, MO 

Variable I-70 Training Data I-70 Testing Data 

Odd Ratio Std. error p-value Odd Ratio Std. error p-value 

Crash Severity-Case 1: Minor Injury relative to base level (property damage) 

MONTH     1.015594    0.0121626      0.196 1.098245    .0187836     0.326 

DAY_WEEK    .9868066    .0201894     0.516 .9911457    .0322842      0.421 

HOUR     1.002493    .0069472      0.719 1.017365     .0112121      0.118 

NO_VEHICLE     2.013444    .1528305      0.000 1.603548    .1673633      0.000 

DIRECTION      1.001714     .204671      0.993 1.299179    .4009112      0.396 

LIGHT_COND     1.018658    .0539375      0.727 1.079072    .0817907     0.800 

ACC_TYPE     .7646827    .0322156     0.000 .827777     .0512309     0.002 

DR_DRINK     .4393219    .0827939     0.000 .4566945    .1487597     0.016 

SPEED     .7628727    .0832404     0.013 .7331396    .1258309     0.021 

CZONE      .8728007    .1914342      0.882 .8306115    .4002926      0.384 

DR_AGGRESSIVE      .6820784    .1231692      0.044 .6812309    .1762853      0.046 

CELL_TEXT     .5149235    .1742725     0.049 .3814188    .2081773     0.047 

DR_AGE 1.037926 .3769126 0.158 1.078291 .2189271 0.183 

VEH_TYPE .8286522 .1593428 0.462 0.857681 .1783352 0.413 

RURAL_URBAN      1.21414    .1662723      0.157 1.194506    .2581555      0.411 

NUMBER_ LANES     1.043295    .0714342      0.536 1.009117    .1109496      0.081    

AADT     1.000573    .0018531      0.757 1.000707    .0028542      0.804 

GRADE_LEVEL     .9969032    .2049085     0.988 .9728124    .3983592      0.425 

SIGHT_DIST    .7887534    .1578979      0.563 .7821214     .2694931      0.387 

Gi*     1.411994    .0908021      0.000 1.538624    .1471736      0.000 

CONSTANT      .504704    .3106637     0.267 .3146406    .3145004     0.247 

Crash Severity-Case 2: Disabled relative to base level (property damage) 

MONTH     1.04566    .0294898      0.113 1.052662     .044181      0.221 

DAY_WEEK    .9849045     .055887     0.004 .9713375    .0714767      0.019   

HOUR     1.0907501    .0153366     0.548 1.0921144    .0225957      0.067 

NO_VEHICLE     2.325778     .346116     0.000 1.303495    .3296267      0.029 

DIRECTION     1.0244691     .102775  0.141 1.0231048    .7614965      0.314    

LIGHT_COND     1.0325387    .1239202      0.836 1.0277047    .2202536      0.156 

ACC_TYPE     .77145632     .061105     0.000 .79145609    .1310232     0.006 

DR_DRINK     .1758408    .0543585    0.000 .2855924    .1548372     0.021 

SPEED     .6718398    .1729933     0.122 .5888928    .2284686     0.172 

CZONE     .8159377    .5622705        0.760 .81661143    .3387404     0.375 

DR_AGGRESSIVE     .79283284    .3286617      0.251 .72908047    .4614627      0.475 

CELL_TEXT     .6839739     .518411     0.016 .6161388    .1346915     0.029 

DR_AGE 1.098286 .482946 0.243 1.08442 .4398022 0.283 

VEH_TYPE .7338291 .172765 0.389 0.672993 .1798307 0.317 

RURAL_URBAN      1.154855    .3503854     0.635 1.1281573    .4360739    0.274 

NUMBER_ LANES     1.0623837    .1297353     0.035 1.0729747    .327797      0.041 

AADT     1.0900496    .0048217      0.302 1.0993353    .0064666    0.306 

GRADE_LEVEL     .99225575     .095807     0.000 .92474128    1.210746      0.015 
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SIGHT_DIST    .79043115    .3559404      0.733 .7477588    .8220375      0.102 

Gi*    1.4794826    .1600518     0.899 1.48589779    .3452499      0.033 

CONSTANT      .4430657  5.736671      0.273 .42062742      .40145    0.417 

Crash Severity-Case 3: Fatal relative to base level (property damage) 

MONTH     1.204367    .0806321      0.005 1.204406   .0831499     0.014 

DAY_WEEK    .9863804    .105922     0.737 .9828217    .1155401     0.177 

HOUR     1.023859    .0319797      0.450 1.036516   .0377693     0.365 

NO_VEHICLE     2.232134    .5612323      0.001 1.707896    .4912682     0.009 

DIRECTION     1.099131    1.869167      0.515 1.042631    1.473025      0.231 

LIGHT_COND     1.042018    .6304126      0.001 1.038765     .766612      0.007 

ACC_TYPE     .7563569    .3752455      0.063 .6287748    .3629575      0.370 

DR_DRINK     .1747316    .1104344     0.006 .2648509    .4530978      0.033 

SPEED     .3108948    .2162619     0.093 .3551321     .334089     0.271 

CZONE     .82678563    .1350873      0.081 .8429472    .244088      0.291 

DR_AGGRESSIVE     .8619844    3.320254      0.003 .8827105    3.191887      0.008 

CELL_TEXT     .2562309    .2849574     0.021 .0714367    .0850799     0.027 

DR_AGE 1.0981655 .7690331 0.295 1.0616548 .2628931 0.319 

VEH_TYPE .7822954 .1692881 0.284 0.781194 .1672393 0.342 

RURAL_URBAN      1.3862095    .4994118     0.605 1.4874849    .4314113     0.217 

NUMBER_ LANES     1.0718678    .3198925     0.404 1.0565231    .9127193      0.344 

AADT     1.002445    .0111129    0.226 1.0876658    .0134131     0.361 

GRADE_LEVEL     .75853    .7540079     0.781 .82517107    2.630318      0.377 

SIGHT_DIST    .7223947    .8266755      0.765 .7313107    .0126497 0.189 

Gi*   1.93349    .6259672      0.042 2.124357 1.128395      0.045 

CONSTANT      .68610    2.9507     0.916 .677015    1.40901     0.487 

 

For example, when inspecting the MONTH predictor in the 1st case of crash 

severity (i.e. minor injury relative to property damage) in Table 5.18 for the training 

dataset, the odd ratio is greater than 1.0 (i.e. 1.015594), which indicates that this predictor 

is positively contributing to the crash severity at this level (i.e. minor injury), however it 

is not significant at the 95% confidence as its p-value is greater than 0.05. In other words, 

the contribution of the predictor MONTH to the crash severity of the level of minor 

injury, would be expected to increase by a factor of 1.015594 given the other variables in 

the model are held constant. When inspecting the DAY_WEEK predictor in the 1st case 

of crash severity (i.e. minor injury relative to property damage) in Table 5.18 for the 
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training dataset, the odd ratio is smaller than 1.0 (i.e. 0.9868066), which indicates that 

this predictor is negatively contributing to the crash severity at this level (i.e. minor 

injury), and it is not significant at the 95% confidence as its p-value is greater than 0.05. 

When inspecting the NO_VEHICLE predictor in the 1st case of crash severity (i.e. minor 

injury relative to property damage) in Table 5.18 for the training dataset, the odd ratio is 

greater than 1.0 (i.e. 2.013444), which indicates that this predictor is positively 

contributing to the crash severity at this level (i.e. minor injury), and it is significant at 

the 95% confidence as its p-value is less than 0.05. So, the contribution of the predictor 

NO_VEHICLE to the crash severity of the level of minor injury, would be expected to 

increase by a factor of 2.013444 given the other variables in the model are held constant. 

Likewise, when inspecting the MONTH predictor in the 2nd case of crash severity (i.e. 

disabled relative to property damage) in Table 5.18 for the training dataset, the odd ratio 

is greater than 1.0 (i.e. 1.04566), which indicates that this predictor is positively 

contributing to the crash severity at this level (i.e. disabled), however it is not significant 

at the 95% confidence as its p-value is greater than 0.05. In other words, the contribution 

of the predictor MONTH to the crash severity of the level of “disabled”, would be 

expected to increase by a factor of 1.04566 given the other variables in the model are 

held constant. When inspecting the MONTH predictor in the 3rd case of crash severity 

(i.e. fatal relative to property damage) in Table 5.18 for the training dataset, the odd ratio 

is greater than 1.0 (i.e. 1.204367), which indicates that this predictor is positively 

contributing to the crash severity at this level (i.e. fatal), and it is significant at the 95% 

confidence as its p-value is less than 0.05. When inspecting the NO_VEHICLE predictor 

in the 2nd and 3rd cases of crash severity (i.e. disabled relative to property damage, and 
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fatal relative to property damage) in Table 5.18 for the training dataset, the odd ratios are 

greater than 1.0 (i.e. 2.325778, 2.232134 respectively), which indicates that this predictor 

is positively contributing to the crash severity at these two levels (i.e. disabled, and fatal), 

and it is significant at the 95% confidence as its p-values are less than 0.05. So, the 

contribution of the predictor NO_VEHICLE to the crash severity of the levels of 

“disabled” and “fatal”, would be expected to increase by a factor of 2.325778 and 

2.232134 respectively given the other variables in the model are held constant.  

5.4.2: Significant Risk Factors for I-70 Corridor 

The statistically significant risk factors (i.e. predictors or independent variables) 

of the I-70 corridor in Missouri at the 95% confidence level are shown in Table 5.19. 

Table 5.19: Significant risk factors for I-70, MO 

Crash Severity Level INTERSTATE I-70, MO 

Significant Risk Factors Significant Group Factors  

Case 1: Minor Injury 1. NO_VEHICLE 
2. ACC_TYPE 
3. DR_DRINK 
4. SPEED 
5. DR_AGGRESSIVE 
6. CELL_TEXT 
7. Gi* 

1. Driver Behavior 
2. Accident Type 
3. Spatial 

Autocorrelation 

Case 2: Disabled 1. DAY_WEEK 
2. NO_VEHICLE 
3. ACC_TYPE 
4. DR_DRINK 
5. CELL_TEXT 
6. NUMBER_LANES 
7. GRADE_LEVEL 

1. Time 
2. Driver Behavior 
3. Accident Type 
4. Road Geometry 

 

Case 3: Fatal 1. MONTH 
2. NO_VEHICLES 
3. LIGHT_COND 
4. DR_DRINK  
5. DR_AGGRESSIVE 
6. CELL_TEXT 
7. Gi* 

1. Time 
2. Driver Behavior 
3. Environment 
4. Spatial 

Autocorrelation 
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For the 1st case of crash severity level (i.e. minor injury relative to property 

damage), the number of vehicles involved in the crashes, the accident type, the driver 

drink, the speed, the driver aggressiveness, the cell-text, and the spatial autocorrelation 

index Gi* are significant at the 95% confidence level. For the 2nd case of crash severity 

level (i.e. disabled relative to property damage), the day of the week, the number of 

vehicles involved in the crashes, the accident type, the driver drink, the cell-text, the 

number of lanes, and the grade of the road are significant at the 95% confidence level. 

For the 3rd case of crash severity level (i.e. fatal relative to property damage), the month 

of the year, the number of vehicles involved in the crashes, the light condition, the driver 

drink, the driver aggressiveness, the cell-text, and the spatial autocorrelation index Gi* 

are significant at the 95% confidence level. We can see that two risk factors (i.e. the 

number of vehicles involved in the crashes and using the cell phones or texts when 

driving) are significant at the three crash severity levels (i.e. minor injury, disabled, fatal), 

indicating the importance of these two risk factors in modeling the severity of crashes of 

the I-70 corridor in MO. Some other risk factors are significant at only two levels of 

crash severity, but not at the third level. These risk factors are, the accident type, the 

driver drink, the driver aggressiveness, and the spatial autocorrelation index Gi*. The 

speed, the light condition, the number of lanes, the grade of the road, the day of the week, 

and the month of the year are significant at only one level of crash severity. In term of the 

significant group of factors, we can see that the driver’s behavior group is the most 

important one as it has been related to the three crash severity levels, whereas the 

accident type, the time, and the spatial autocorrelation are next in their importance.  
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5.4.3: Predicted Odd Ratios for Roads in Boone County 

In the MNL model of crashes along roads in Boone County, incidents involving 

property damage are also considered the referent group (i.e. base level), because it is the 

most frequent outcome of crash severity, and the other outcome levels (i.e. minor injury, 

disabled, and fatal) are estimated relative to the property damage. The standard 

interpretation of the multinomial logistic regression is that for a unit change in the 

predictor variable, the odd ratio of outcome m relative to the referent group is expected to 

change by its respective parameter estimate given the other predictors in the model are 

held constant (Judge et al. 1985; Greene 2012). The predicted odd ratios for the Boone 

County road network (for both training and testing data) are obtained using Stata 14 and 

summarized in Table 5.20. The odd ratios are significant when their related p-values at 

the 95% confidence level are less than 0.05. Again, if the odd ratios are greater than 1.0, 

then the predictors are positively correlated with the dependent variable (i.e. crash 

severity), and if the odd ratios are smaller than 1.0, then the predictors are negatively 

correlated with the dependent variable. That is, if the odd ratios are greater than 1.0, then 

the predictors would increase the likelihood of the crash severity occurrence at the 

specified level, indicating positive contribution to the crash occurrence at that level, and 

if the odd ratios are smaller than 1.0, then the predictors would decrease the likelihood of 

the crash severity occurrence at the specified level, indicating negative contribution to the 

crash occurrence at that level. For example, when inspecting the MONTH predictor in the 

1st case of crash severity (i.e. minor injury relative to property damage) in Table 5.20 for 

the training dataset, the odd ratio is greater than 1.0 (i.e.1.023512), which indicates that 

this predictor is positively contributing to the crash severity at this level.  
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Table 5.20: Predicted odd ratios for Boone County crashes 

Variable Boone County Training Data Boone County Testing Data 

Odd Ratio Std. error p-val. Odd Ratio Std. error p-val. 

Crash Severity-Case 1: Minor Injury relative to base level (property damage) 

MONTH     1.023512    .0178198      0.182 1.0391251   .0267104     0.433 

DAY_WEEK    1.050252    .0326366      0.115 1.051563    .0491662      0.282 

HOUR     1.008425    .0109369      0.339 1.009422    .0172743      0.384 

NO_VEHICLE     1.109713    .1340897      0.289 1.097612    .2147287      0.534 

DIRECTION     .9594881    .0528776     0.353 .9926082    .0877978     0.333 

LIGHT_COND     .9285046    .0790094     0.383 .9857805    .1285591     0.513 

ACC_TYPE     1.11028    .0708534      0.011 1.1992554    .1067796     0.045 

DR_DRINK     .4641011    .1170542     0.002 .43295565    .5322886      0.029 

SPEED     .6548458    .1151811     0.016 .6649197    .2915138      0.023 

CZONE     .7388649    1.083669      0.474 .7378288    .1595233     0.515 

DR_AGGRESSIVE     .2881921    .1379217     0.022 .1202204    .1085349     0.019 

CELL_TEXT     .5927003    .2307324     0.179 .6558653    .1403237     0.149 

DR_AGE 1.0584471 .2267390 0.276 1.038509 .2148788 0.229 

VEH_TYPE .89795529 .16829845 0.371 0.818856 .1693376 0.393 

RURAL_URBAN      .7351476    .2060147      0.048 .7454935    1.164492     0.039 

NUMBER_LANES     1.001044    .0954435      0.491 1.0915989    .0893968     0.063 

AADT     .9875969    .0048482     0.011 .97341468    .3273556      0.029 

GRADE_LEVEL     .8373625    .1652473      0.008 .83470132    .1375984     0.029 

SIGHT_DIST    .3958206    .1643202     0.026 .3771198    .0071083      0.038 

Gi*    .9784839    .1000868     0.432 .9728619    .1787239     0.481 

CONSTANT      .4663202    .4573384     0.437 .8331453    .4887709     0.556 

Crash Severity-Case 2: Disabled relative to base level (property damage) 

MONTH     1.027664    .0396199      0.279 1.027918     .060554      0.341 

DAY_WEEK    1.0867191    .0674279     0.345 1.066993    .1081113      0.503 

HOUR     1.026415    .0234237      0.043 1.104746    .0458959      0.016 

NO_VEHICLE     1.051400    .3663203      0.086 1.048285    .4649553      0.415 

DIRECTION     .9108936    .1373576      0.404 .91477786    .1940384     0.610 

LIGHT_COND     .9803828     .1763913     0.312 .8947385    .2473296     0.387 

ACC_TYPE     1.125627   .1160428     0.017 1.1729226    .1992348     0.042 

DR_DRINK     .2234158    .0939533     0.000 .4175788    .2678347     0.033 

SPEED     .9628479     .3460866   0.316 .8971088     .547267     0.359 

CZONE     .73511179    .1070972     0.491 .7364136    .5387798      0.364 

DR_AGGRESSIVE     .4383074    .1475095     0.014 .4634503     .1668073      0.000 

CELL_TEXT     .4083762    .2752782     0.018 .7646755    .3778548     0.048 

DR_AGE 1.068703 .1673985 0.226 1.018493 .2373981 0.369 

VEH_TYPE .7773818 .1539893 0.418 .8398558 .1604776 0.441 

RURAL_URBAN      .8308998   .2637057     0.316 .8357229    .3880534     0.345 

NUMBER_LANES     1.0812004    .2357547     0.043 1.0709151    .1879346     0.041 

AADT     .9906553    .0114682     0.417 .96553461    .8555893      0.424 

GRADE_LEVEL     .7912488    .2725091      0.036 .79494419    .2314235     0.013 
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SIGHT_DIST    .6969566    .5264204     0.033 .6825348    .0152198      0.042 

Gi*    .9064754   .2065277     0.466 .908094    .2845001     0.378 

CONSTANT      .427664    .0396199      0.479 .443272    1.175688      0.870 

Crash Severity-Case 3: Fatal relative to base level (property damage) 

MONTH     1.05751    .0953748      0.043 1.0328668    .2303312     0.039 

DAY_WEEK    1.129193     .1291938     0.186 1.1214809   .8643811      0.677 

HOUR     1.010052     .052407      0.347 1.0110705    .2534203     0.584 

NO_VEHICLE     1.991718    .8497575      0.016 1.9654836 .3418705 0.028 

DIRECTION     .8367988    .4153565      0.302 .8232213    .3379216      0.776 

LIGHT_COND     .9437547    .4170947     0.496 .9205592 .7692041 0.463 

ACC_TYPE     1.1730617    .3303531     0.336 1.1560646    .1175807      0.390 

DR_DRINK     .0720745   .0629678     0.003 .1535938    .1099242      0.037 

SPEED     .4816572    .3670916     0.038 .4213397    .5380519     0.042 

CZONE     .7131492    .757008      0.596 .7562388    .258676     0.486 

DR_AGGRESSIVE     .3602092    .3184739     0.024 .4555812    .1928740     0.049 

CELL_TEXT     .3223915    .4151208      0.038 .4194732    .2332836      0.032 

DR_AGE 1.027598 .3879915 0.275 1.059332 .247812 0.217 

VEH_TYPE .7699251 .1593362 0.383 .7299471 .1588603 0.428 

RURAL_URBAN      .8389658   .3068237     0.231 .82182219     .2541412      0.495 

NUMBER_ LANES     1.0087394    .5154228     0.466 1.0041855    .2802945      0.263 

AADT     .9712408    .0229827      0.387 .98425828    .2727403      0.461 

GRADE_LEVEL     .74658076    .5513545     0.421 .74048891     .1052855     0.375 

SIGHT_DIST    .2706806    .0024528     0.689  .4225826    .2741932      0.672 

Gi*    .9430182     .710843      0.372 .9406916    .1014820      0.496 

CONSTANT      .1873913    .607109     0.592 .1881586    .2258365     0.551 

 

In other words, the contribution of the predictor MONTH to the crash severity of 

the level of minor injury, would be expected to increase by a factor of 1.023512 given the 

other variables in the model are held constant. When inspecting the LIGHT_COND 

predictor in the 1st case of crash severity (i.e. minor injury relative to property damage) in 

Table 5.20 for the training dataset, the odd ratio is smaller than 1.0 (i.e.0.9285046), 

which indicates that this predictor is negatively contributing to the crash severity at this 

level (i.e. minor injury), and it is not significant at the 95% confidence as its p-value is 

greater than 0.05. When inspecting the ACC_TYPE predictor in the 1st case of crash 

severity (i.e. minor injury relative to property damage) in Table 5.20 for the training 
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dataset, the odd ratio is greater than 1.0 (i.e.1.11028), which indicates that this predictor 

is positively contributing to the crash severity at this level (i.e. minor injury), and it is 

significant at the 95% confidence as its p-value is less than 0.05. So, the contribution of 

the predictor ACC_TYPE to the crash severity of the level of minor injury, would be 

expected to increase by a factor of 1.11028 given the other variables in the model are 

held constant. Likewise, when inspecting the MONTH predictor in the 2nd case of crash 

severity (i.e. disabled relative to property damage) in Table 5.20 for the training dataset, 

the odd ratio is greater than 1.0 (i.e. 1.027664), which indicates that this predictor is 

positively contributing to the crash severity at this level (i.e. disabled), however it is not 

significant at the 95% confidence as its p-value is greater than 0.05. In other words, the 

contribution of the predictor MONTH to the crash severity of the level of “disabled”, 

would be expected to increase by a factor of 1.027664 given the other variables in the 

model are held constant. When inspecting the MONTH predictor in the 3rd case of crash 

severity (i.e. fatal relative to property damage) in Table 5.20 for the training dataset, the 

odd ratio is greater than 1.0 (i.e.1.05751), which indicates that this predictor is positively 

contributing to the crash severity at this level (i.e. fatal), and it is significant at the 95% 

confidence as its p-value is less than 0.05.  

5.4.4: Significant Risk Factors for Boone County Crashes 

The statistically significant risk factors (i.e. predictors or independent variables) 

of the Boone County road network in Missouri at the 95% confidence level are shown in 

Table 5.21. For the 1st case of crash severity level (i.e. minor injury relative to property 

damage), the accident type, the driver drink, the speed, the driver aggressiveness, the 

rural-urban, the AADT, the grade of the road, and the sight distance of the road are 



www.manaraa.com

 

 

213 

 

significant at the 95% confidence level. For the 2nd case of crash severity level (i.e. 

disabled relative to property damage), the hour of the day, the accident type, the driver 

drink, the driver aggressiveness, the cell-text, the number of lanes, the grade of the road, 

and the sight distance of the road are significant at the 95% confidence level. 

Table 5.21: Significant risk factors for Boone County crashes 

Crash Severity Level                            BOONE COUNTY, MO Roads                                                                                                        

Significant Risk Factors Significant Group Factors 

Minor Injury 1. ACC_TYPE 
2. DR_DRINK 
3. SPEED 
4. DR_AGGRESSIVE 
5. RURAL_URBAN       
6. AADT 
7. GRADE_LEVEL 
8. SIGHT_DIST 

1. Driver Behavior 
2. Accident Type 
3. Road Geometry 
4. Traffic Operation 
5. Sight Distance 

Disabled 1. HOUR 
2. ACC_TYPE 
3. DR_DRINK 
4. DR_AGGRESSIVE 
5. CELL_TEXT 
6. NUMBER_LANES 
7. GRADE_LEVEL 
8. SIGHT_DIST 

1. Time 
2. Driver Behavior 
3. Accident Type 
4. Road Geometry 
5. Sight Distance 

Fatal 1. MONTH 
2. NO_VEHICLES 
3. DR_DRINK 
4. DR_AGGRESSIVE 
5. SPEED 
6. CELL_TEXT 

1. Time 
2. Driver Behavior 

 

 

For the 3rd case of crash severity level (i.e. fatal relative to property damage), the 

month of the year, the number of vehicles involved in the crashes, the driver drink, the 

driver aggressiveness, the cell-text, and the speed are significant at the 95% confidence 

level. It can be seen that two risk factors (i.e. the driver drink, and the driver 

aggressiveness) are significant at the three crash severity levels (i.e. minor injury, 
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disabled, fatal), indicating the importance of these two risk factors in modeling the 

severity of crashes along Boone County roads. Some other risk factors are significant at 

only two levels of crash severity, but not at the third level. These risk factors are, the 

accident type, cell-text, the speed, the grade of the road, and the sight distance of the 

road. The number of vehicles involved in the crash, the AADT, and the number of lanes 

are significant at only one level of crash severity. In term of the significant group of 

factors, we can see that the driver’s behavior group is the most important one as it has 

been related to the three crash severity levels, whereas the accident type, the road 

geometry, the time, and the sight distance are next in their importance. The traffic 

operation (i.e. the AADT) is less important among the other groups as it contributes to 

only one crash severity level. 

5.4.5: Marginal Effects for Crashes Along I-70 Corridor 

The marginal effect reflects the impact of a one-unit change of an independent 

variable (predictor) on the event probability of the dependent variable (keeping all other 

independent variables constant at their mean values). In MNL, the marginal effect of an 

explanatory variable (predictor) is the partial derivative of the event probability with 

respect to the predictor of interest (i.e. the change in the event probability of the 

dependent variable for a unit change in the predictor), and they could be positive or 

negative values. Positive values indicate that the predictor would positively contribute to 

crash severity (i.e. would increase the degree severity of crashes), and negative values 

indicate that the predictor would negatively contribute to crash severity (i.e. would 

decrease the degree severity of crashes). The marginal effect for a dummy or discrete 

independent variable is the difference of the predicted probability values at their different 
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levels (Long and Freese 2014). The marginal effects for the I-70 corridor (for both 

training and testing data) are obtained using Stata 14 and reported in Table 5.22. It can be 

seen from the table that some predictors have higher marginal effects than others. For 

instance, the driver drink predictor has a marginal effect of 15.56 % for training data, and 

16.07% for testing data. These values present the difference of the event probability of 

the crash severity when drivers using the road being drunk and not drunk.   

Table 5.22: Marginal effects for crashes along I-70 

Variable Name  Variable Subgroup % Marginal Effect 

I-70 Training I-70 Testing 

GRADE_LEVEL grade 
level 

3.22 
- 1.58 

3.62 
- 1.74 

NUMBER_LANES one lane 
two lanes 
three lanes 
four lanes 
five lanes 
six lanes or more 

1.06 
2.05 
- 2.28 
- 2.94 
1.31 
0.42 

1.23 
2.16 
- 2.77 
- 2.49 
1.53 
0.22 

RURAL_URBAN rural 
urban 

1.97 
- 1.56 

2.31 
- 1.81 

CZONE n/a 1.71 2.33 

Gi* high-high (HH)   
low-low (LL)  
random  

 

5.67 
4.12 
- 2.19 

5.72 
4.38 
- 1.96 

SIGHT_DIST n/a 2.88 2.41 

AADT n/a 1.92 1.72 

HOUR n/a 1.74 2.09 

DAY_WEEK Sun 
Mon 
Tues     
Wed 
Thurs   
Fri  
Sat 

- 2.02 
2.31 
- 2.09 
- 1.65 
- 1.38 
3.15 
2.88 

- 1.79 
1.84 
- 1.98 
- 1.43 
- 1.17 
3.37 
2.49 

MONTH n/a 1.67 1.89 

DIRECTION east 
west 

1.47 
1.31 

1.52 
1.36 
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In other words, if all the drivers that use the I-70 corridor in MO were not in 

intoxicated conditions, then the probability of crash severity at the I-70 corridor would 

decrease by 15.56% using training data and 16.07% using testing data. The speed 

predictor has a marginal effect of 8.04 % for training data, and 10.12% for testing data. 

These values present the difference of the event probability of the crash severity when 

drivers using the road are speeding and not speeding so that the crash severity would 

decrease by (8.04% using training data and 10.12% using testing data) if all drivers were 

not speeding. The cell-text predictor has a marginal effect of 12.54% for training data, 

and 14.17% for testing data. These values present the difference of the event probability 

LIGHT_COND Daylight 
Dark, lighted 
Dark, unlighted 

- 0.43 
- 0.79 
0.59 

- 0.23 
- 0.62 
0.44 

DR_AGE Less than 21 years 
from (21- 64) years 
more than 64 years 

2.58 
- 1.87 
2.49 

2.87 
- 1.63 
2.61 

VEH_TYPE passenger car 
motorcycle 
truck 

 

- 1.62 
2.16 
- 1.79 

- 1.44 
2.06 
- 1.48 

NO_VEHICLE one vehicle 
two vehicles 
three vehicles 
four vehicles 
five vehicles 
six or more vehicles 

9.58 
14.54 
13.17 
14.39 
13.33 
15.17 

10.62 
15.87 
13.16 
15.04 
13.94 
14.81 

ACC_TYPE animal 
fixed object 
overturn 
pedestrian 
vehicle in transport 

1.78 
7.06 
8.39 
7.17 
7.38 

2.19 
6.48 
7.79 
7.36 
7.27 

DR_DRINK n/a -15.56 -16.07 

SPEED n/a -8.04 -10.12 

DR_AGGRESSIVE n/a -8.84 -8.41 

CELL_TEXT n/a -12.54 -14.17 



www.manaraa.com

 

 

217 

 

of the crash severity when drivers are using the cell phones and/or texting during the 

driving and not using them so that the crash severity would decrease by 12.54% using 

training data and 14.17% using testing data if all drivers were not using cell-text when 

driving. The Gi* predictor relative to high spatial autocorrelation (HH) crashes has a 

marginal effect of 5.67% for training data, and 5.72% for testing data. Meaning that 

crashes with HH spatial autocorrelation would increase the severity by 5.67% using 

training data and 5.72% using testing data. The Gi* predictor relative to low spatial 

autocorrelation (LL) crashes has a marginal effect of 4.12% for training data, and 4.38% 

for testing data. Meaning that crashes with LL spatial autocorrelation would increase the 

severity by 4.12% using training data and 4.38% using testing data. The Gi* predictor 

relative to insignificant random crashes has a marginal effect of -2.19% for training data, 

and -1.96% for testing data. Meaning that random spatial autocorrelation crashes would 

decrease the severity by 2.19% using training data and 1.96% using testing data. The 

number of vehicles involved (assuming one vehicle) in the crash has a marginal effect of 

9.58% for training data, and 10.62% for testing data. Meaning that if only one vehicle is 

involved in the crash, then it would increase the severity by 9.58% using training data 

and 10.62% using testing data. However, if the number of vehicles involved were 

increased to two vehicles, then this would increase the severity by 14.54% using training 

data and 15.87% using testing data. If the number of vehicles increased to three vehicles, 

then this would increase the severity by 13.17% using training data and 13.16% using 

testing data. If the number of vehicles further increased to four vehicles, then this would 

increase the severity by 14.39% using training data and 15.04% using testing data. The 

sight distance predictor has a marginal effect of 2.88 % for training data, and 2.41% for 
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testing data. These values present the difference of the event probability of crash severity 

if all road segments were adequate in their decision sight distance relative to AASHTO 

(2011) standards. Meaning that segments that may have visibility issues would increase 

the severity by 2.88% using training data and 2.41% using testing data. The accident type 

predictor (ACC_TYPE) relative to an animal has a marginal effect of 1.78% for training 

data and 2.19% for testing data. Meaning if an animal would have caused the accident, 

then this would increase the severity by 1.78% using training data and 2.19% using 

testing data. However, the accident type predictor relative to a fixed object has a marginal 

effect of 7.06% for training data and 6.48% for testing data. Meaning if a fixed object 

(such as a tree or a traffic sign) would have caused the accident, then this would increase 

the severity by 7.06% using training data and 6.48% using testing data. However, the 

accident type predictor relative to an overturn has a marginal effect of 8.39% for training 

data and 7.79% for testing data. Meaning if an overturn was the accident type, then this 

would increase the severity by 8.39% using training data and 7.79% using testing data. 

Similarly, the accident type predictor relative to a pedestrian has a marginal effect of 

7.17% for training data and 7.36% for testing data. Meaning if a pedestrian would have 

caused the accident, then this would increase the severity by 7.17% using training data 

and 7.36% using testing data. In similar manner, the accident type predictor relative to a 

vehicle in transport has a marginal effect of 7.38% for training data and 7.27% for testing 

data. Meaning if a vehicle in transport would have caused the accident, then this would 

increase the severity by 7.38% using training data and 7.27% using testing data. 
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5.4.6: Marginal Effects for Boone County Crashes 

The marginal effects for crashes along Boone County roads (for both training and 

testing data) are obtained using the Stata 14 and are reported in Table 5.23. It can be seen 

from the table that some predictors have higher marginal effects than others. For instance, 

the driver drink predictor has a marginal effect of 16.67% for training data, and 16.96% 

for testing data. These values present the difference of the probability of the crash 

severity when drivers using the road being drunk and not drunk. 

Table 5.23: Marginal effects for Boone County crashes 

Variable name  Variable Subgroup % Marginal Effect 

Boone Training Boone Testing 

GRADE_LEVEL grade 
level 

6.17 
- 0.73 

6.22 
- 1.38 

NUMBER_LANES one lane 
two lanes 
three lanes 
four lanes 
five lanes 
six lanes or more 

3.27 
2.14 
2.49 
- 1.72 
- 2.51 
- 2.65 

2.79 
1.87 
1.81 
- 2.33 
- 1.83 
- 3.31 

RURAL_URBAN rural 
urban 

3.86 
- 0.69 

3.27 
- 1.36 

CZONE n/a 2.18 2.27 

Gi* high-high (HH)   
low-low (LL)  
random  

 

2.72 
1.82 
- 2.11 

1.85 
2.53 
- 2.54 

SIGHT_DIST n/a 4.27 4.13 

AADT n/a 2.48 2.32 

HOUR n/a 2.17 2.52 

DAY_WEEK 1 - Sun 
2 - Mon 
3 - Tues     
4 - Wed 
5 -  Thurs   
6 - Fri  
7 - Sat 

1.13 
2.21 
- 1.59 
- 1.83 
- 1.61 
2.05 
1.74 

1.64 
1.69 
- 1.17 
- 1.48 
- 1.29 
2.36 
2.17 

MONTH n/a 1.41 1.52 
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That is, if all the drivers that use the Boone County roads were not in intoxicated 

conditions, then the probability of crash severity at Boone roads would decrease by 

16.67% using training data and 16.96% using testing data. The speed predictor has a 

marginal effect of 7.31% for training data, and 8.53% for testing data. These values 

present the difference of the event probability of the crash severity when drivers using the 

road are speeding and not speeding so that the crash severity would decrease by (7.31% 

using training data and 8.53% using testing data) if all drivers were not speeding. The 

DIRECTION east 
west 
north 
south 

- 0.79 
- 0.94 
1.16 
1.44 

- 1.15 
- 0.48 
1.53 
1.32 

LIGHT_COND Daylight 
Dark, lighted 
Dark, unlighted 

- 0.88 
- 0.34 
2.08 

- 1.37 
- 0.61 
1.58 

DR_AGE Less than 21 years 
from (21- 64) years 
more than 64 years 

3.24 
- 0.64 
3.44 

2.69 
- 1.83 
3.72 

VEH_TYPE passenger car 
motorcycle 
truck 

 

- 0.95 
3.12 
- 1.66 

- 1.22 
2.58 
- 1.29 

NO_VEHICLE one vehicle 
two vehicles 
three vehicles 
four vehicles 
five vehicles 
six or more vehicles 

4.37 
6.61 
5.54 
7.37 
7.62 
7.39 

5.75 
7.18 
6.04 
8.16 
6.88 
5.47 

ACC_TYPE animal 
fixed object 
overturn 
pedestrian 
vehicle in transport 

2.22 
4.62 
6.04 
5.39 
6.69 

1.52 
5.19 
6.79 
6.47 
7.45 

DR_DRINK n/a -16.67 -16.96 

SPEED n/a -7.31 -8.53 

DR_AGGRESSIVE n/a -14.66 -13.68 

CELL_TEXT n/a -11.78 -13.04 
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cell-text predictor has a marginal effect of 11.78% for training data, and 13.04% for 

testing data. These values present the difference of the event probability of the crash 

severity when drivers are using the cell phones and/or texting during the driving and not 

using them so that the crash severity would decrease by 11.78% using training data and 

13.04% using testing data if all drivers were not using cell-text when driving. The Gi* 

predictor relative to high spatial autocorrelation (HH) crashes has a marginal effect of 

2.72% for training data, and 1.85% for testing data. Meaning that crashes with HH spatial 

autocorrelation would increase the severity by 2.72% using training data and 1.85% using 

testing data. The Gi* predictor relative to low spatial autocorrelation (LL) crashes has a 

marginal effect of 1.82% for training data, and 2.53% for testing data. Meaning that 

crashes with LL spatial autocorrelation would increase the severity by 1.82% using 

training data and 2.53% using testing data. The Gi* predictor relative to insignificant 

random crashes has a marginal effect of -2.11% for training data, and -2.54% for testing 

data. Meaning that random spatial autocorrelation crashes would decrease the severity by 

2.11% using training data and 2.54% using testing data. The number of vehicles involved 

(assuming one vehicle) in the crash has a marginal effect of 4.37% for training data, and 

5.75% for testing data. Meaning that if only one vehicle is involved in the crash, then it 

would increase the severity by 4.37% using training data and 5.75% using testing data. 

However, if the number of vehicles involved were increased to two vehicles, then this 

would increase the severity by 6.61% using training data and 7.18% using testing data. If 

the number of vehicles increased to three vehicles, then this would increase the severity 

by 5.54% using training data and 6.04% using testing data. If the number of vehicles 

further increased to four vehicles, then this would increase the severity by 7.37% using 
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training data and 8.16% using testing data. The sight distance predictor has a marginal 

effect of 4.27% for training data, and 4.13% for testing data. Meaning that segments that 

may have visibility issues would increase the severity by 4.27% using training data and 

4.13% using testing data. The accident type predictor (ACC_TYPE) relative to an animal 

has a marginal effect of 2.22% for training data and 1.52% for testing data. Meaning if an 

animal would have caused the accident, then this would increase the severity by 2.22% 

using training data and 1.52% using testing data. However, the accident type predictor 

relative to a fixed object has a marginal effect of 4.62% for training data and 5.19% for 

testing data. Meaning if a fixed object (such as a tree or a traffic sign or wall fence) 

would have caused the accident, then this would increase the severity by 4.62% using 

training data and 5.19% using testing data. However, the accident type predictor relative 

to an overturn has a marginal effect of 6.04% for training data and 6.79% for testing data. 

Meaning if an overturn was the accident type, then this would increase the severity by 

6.04% using training data and 6.79% using testing data. Similarly, the accident type 

predictor relative to a pedestrian has a marginal effect of 5.39% for training data and 

6.47% for testing data. Meaning if a pedestrian would have caused the accident, then this 

would increase the severity by 5.39% using training data and 6.47% using testing data. In 

similar manner, the accident type predictor relative to a vehicle in transport has a 

marginal effect of 6.69% for training data and 7.45% for testing data. Meaning if a 

vehicle in transport would have caused the accident, then this would increase the severity 

by 6.69% using training data and 7.45% using testing data.  
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CHAPTER 6: CONCLUSIONS 

6.1: Conclusion of Results 

Modeling crash severity is very important in highway safety, as it can help to 

establish linkages between crash severity levels and associated risk factors such as driver 

behavior, vehicle characteristics, roadway geometry, and road-environment conditions. 

This dissertation examined three transportation systems within the State of Missouri: 1) 

Interstate I-70 corridor; 2) Boone County roads, and 3) MO Route 5. The study sites of I-

70 corridor and Boone County roads were used to model crash severity along both of 

them, while MO Route 5 was used to locate passing and no-passing zones along it. 

Missouri crash data as recorded in the Missouri Statewide Traffic Accident Records 

System (STARS) were analyzed using three years’ crashes (2013-2015). The total 

number of the observed crashes within the three years’ period was 5869.0 for I-70 

corridor and 2348.0 for Boone County roads. The response variable (i.e. crash severity) 

was modeled with four outcome categories: 1) property-damage-only; 2) minor-injury; 3) 

disabling-injury; and 4) fatal injury. In order to explore potential ways in which crash 

severity models can be improved to better overcome limitations of traditional modeling 

approaches that assume all observations are independent of each other, this dissertation 

developed a detailed framework for detecting temporal and spatial autocorrelation in 

crash data.  In addition, an approach for evaluating the sight distance available to drivers 

along roadways was also proposed.  Finally, a crash severity model was utilized using a 

multinomial logistic regression approach that incorporates the available sight distance 

and spatial autocorrelation as potential risk factors, in addition to a wide range of other 
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factors related to road geometry, traffic volume, driver’s behavior, environment, and 

vehicles. The temporal autocorrelation was thoroughly investigated among the time 

independent variables in crash data using several test statistics to detect the amount of 

temporal autocorrelation and whether it’s significant in crash data. The tests employed 

were: a) Durbin-Watson (DW) test; b) Breusch-Godfrey (LM) test; and c) Ljung-Box Q 

(LBQ) test. The removal of any significant temporal autocorrelation in crash data was 

presented using a) the differencing procedure; and b) Cochrane-Orcutt method. The 

analysis of the road sight distance was performed by a GIS-based approach using 

viewshed tools using the AASHTO (2011) sight distance criteria. In addition, it was also 

used to identify both passing zones and no-passing zones along MO Route 5. The 

viewshed analysis showed that the available stopping sight distance at both I-70 corridor 

and Boone roads was adequate, however, eleven segments along I-70 corridor were 

identified with potential visibility issues as they were not conforming to AASHTO (2011) 

decision sight distance, and thirteen segments along Boone roads were also identified 

with potential visibility issues relative to AASHTO (2011) decision sight distance. The 

decision sight distance at these segments for both I-70 corridor and Boone County roads 

was used as a potential risk factor in modeling crash severity. In exploring the spatial 

autocorrelation of crashes, two indices of spatial autocorrelation were utilized: Moran’s I 

and Getis-Ord Gi* statistic. Then the integration of Gi* statistic as a potential risk factor 

in crash modeling was explored for the first time in the literature. This dissertation also 

introduced a new hybrid method for assessing the spatial autocorrelation by combining 

both Moran’s I and Gi* statistic to examine the spatial clustering patterns of crashes. the 

Global Moran’s I and the General Gi* for MO I-70 and Boone roads indicated the 
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existence of significant spatial autocorrelation of the overall crashes at these sites. To 

further identify the type and extension of spatial autocorrelation among crashes within I-

70 and Boone roads, the Anselin local Moran’s I and the local Gi* indices were 

employed. These indices identified crashes with significant high spatial autocorrelation, 

crashes with significant low spatial autocorrelation, significant outliers, and insignificant 

random crashes. The multinomial logistic regression (MNL) approach was used to model 

the relationships between the dependent variable (i.e. crash severity) and risk factors that 

were included in Missouri crash data for both MO I-70 and Boone roads. The odd ratios 

of the MNL were used to interpret the results of crash severity. For I-70 corridor, the 

results showed that the significant risk factors that contributed to crash severity were: the 

driver drink; the number of vehicles involved in the crash; the accident type; the speed; 

the driver aggressiveness; the use of cell-text; and the spatial autocorrelation index Gi*. 

For Boone roads, the results showed that the significant risk factors that contributed to 

crash severity were: the driver drink; the accident type; the speed; the driver 

aggressiveness; the use of cell-text; and the sight distance.  

6.2: Potential Impacts of Other Risk Factors  

There are other potential risk factors that could be introduced into this modeling 

framework in the future, such as the weather conditions, and the road surface conditions. 

Both were not existed in the MO crash data used in this dissertation. Adverse weather 

conditions (i.e. rain, sleet, snow, fog, severe crosswinds, or blowing snow/sand/debris) 

and/or slick pavement (i.e. wet pavement, snowy/slushy pavement, or icy pavement) can 

increase the number of crashes and the degree of the crash severity injury (Andrey et al. 

2003). Weather conditions can affect driver capabilities, vehicle performance (i.e. 
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traction, stability and maneuverability), pavement friction, roadway infrastructure, and 

traffic flow. In the absence of real-time weather data, their impact can be predicted using 

historic weather data from nearby weather stations to develop information that could help 

in crash modeling (Han et al. 2003). 

6.3: Modeling Crash Points vs. Crash Segments 

Modeling road crash data may include crashes presented either as crash points or 

crash segments along the road. Crash point events are usually presented by their latitude, 

longitude values (or x, y coordinates), while crash segment events are presented by 

specified lengths of road segments (also called crash exposure length). Since there are no 

specific criteria for choosing the crash exposure length, the use of crash points is 

preferred in crash prediction models as it can eliminate potential errors that could arise 

from specifying the crash exposure length. The length of crash segment can affect the 

crash frequency and/or the crash severity at that segment, and researchers have reported 

that the probability and severity of crashes tend to be smaller on shorter road segments 

and higher at longer segments (Lord and Bonneson 2007; Milton et al. 2008). In addition, 

some researchers have indicated that a non-linear relationship may exist between the 

probability and severity of crashes and the length of a segment that could be pointing to 

unobserved heterogeneity (Lord and Mannering 2010). In order to avoid any potential 

crash segment errors, this dissertation used crash points by utilizing the latitude and 

longitude values of each crash as reported in the STARS data, rather than specifying road 

segments in the modeling process. 
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6.4: Effects of Changing DEM’s Resolution  

In this dissertation, the digital elevation models (DEMs) were used to assess the 

stopping and decision sight distances along I-70 corridor and Boone roads in Missouri. 

They were also used to assess the passing sight distance and locating the passing and no-

passing zones along MO Route 5. The accuracy of the DEMs depends on the data source 

and the spatial resolution of DEMs. Research has shown that using higher resolution 

DEMs can derive more details, but not necessarily offer more accurate results (Claessens 

et al. 2005; Zhang et al. 2008). The resolution of all DEMs used in this dissertation was 

30 meters. However, even if higher resolution DEMs were used in the sight distance 

analysis, such as 10 meters, this would have been resulted in more cells per unit area, and 

more surface details, but not necessarily offered more accurate results.  

6.5: The Amount of Violation of AASHTO Standards 

Although the viewshed analysis used in this dissertation can effectively identify 

the segments of the roads with potential visibility issues relative to AASHTO standards, 

however, there is no easy way to determine how much they might be in violation of 

AASHTO standards. One practical method could be to use the GIS functionality to 

manually measure the distance spacing between the observer points along a segment, 

then obtaining an average value of all spacing that would represent the available sight 

distance at that segment, and then determining the difference between the AASHTO 

standards and the available sight distance at that segment. For example, if the required 

AASHTO sight distance is 330 m, and the average spacing between the observer points at 

a segment that may have visibility issues is found to be 290 m, then the amount of 

violation would be (330 – 290 = 40 m) of ASSHTO standards. 
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